@@ -16,17 +16,13 @@
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
-/* If you consider tuning this algorithm, you should consult first:
- Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
- Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
-
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
-/* Swap SIZE bytes between addresses A and B. Helper to generic types
- are provided as an optimization. */
+/* Swap SIZE bytes between addresses A and B. These helpers are provided
+ along the generic one as an optimization. */
typedef void (*swap_t)(void *, void *, size_t);
@@ -98,202 +94,14 @@ typedef struct
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
#define STACK_NOT_EMPTY (stack < top)
-
-/* Order size using quicksort. This implementation incorporates
- four optimizations discussed in Sedgewick:
-
- 1. Non-recursive, using an explicit stack of pointer that store the
- next array partition to sort. To save time, this maximum amount
- of space required to store an array of SIZE_MAX is allocated on the
- stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
- only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
- Pretty cheap, actually.
-
- 2. Chose the pivot element using a median-of-three decision tree.
- This reduces the probability of selecting a bad pivot value and
- eliminates certain extraneous comparisons.
-
- 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
- insertion sort to order the MAX_THRESH items within each partition.
- This is a big win, since insertion sort is faster for small, mostly
- sorted array segments.
-
- 4. The larger of the two sub-partitions is always pushed onto the
- stack first, with the algorithm then concentrating on the
- smaller partition. This *guarantees* no more than log (total_elems)
- stack size is needed (actually O(1) in this case)! */
-
-void
-__qsort_r (void *const pbase, size_t total_elems, size_t size,
- __compar_d_fn_t cmp, void *arg)
-{
- char *base_ptr = (char *) pbase;
-
- const size_t max_thresh = MAX_THRESH * size;
-
- if (total_elems == 0)
- /* Avoid lossage with unsigned arithmetic below. */
- return;
-
- swap_t swap = select_swap_func (pbase, size);
-
- if (total_elems > MAX_THRESH)
- {
- char *lo = base_ptr;
- char *hi = &lo[size * (total_elems - 1)];
- stack_node stack[STACK_SIZE];
- stack_node *top = stack;
-
- PUSH (NULL, NULL);
-
- while (STACK_NOT_EMPTY)
- {
- char *left_ptr;
- char *right_ptr;
-
- /* Select median value from among LO, MID, and HI. Rearrange
- LO and HI so the three values are sorted. This lowers the
- probability of picking a pathological pivot value and
- skips a comparison for both the LEFT_PTR and RIGHT_PTR in
- the while loops. */
-
- char *mid = lo + size * ((hi - lo) / size >> 1);
-
- if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
- swap (mid, lo, size);
- if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
- swap (mid, hi, size);
- else
- goto jump_over;
- if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
- swap (mid, lo, size);
- jump_over:;
-
- left_ptr = lo + size;
- right_ptr = hi - size;
-
- /* Here's the famous ``collapse the walls'' section of quicksort.
- Gotta like those tight inner loops! They are the main reason
- that this algorithm runs much faster than others. */
- do
- {
- while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
- left_ptr += size;
-
- while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
- right_ptr -= size;
-
- if (left_ptr < right_ptr)
- {
- swap (left_ptr, right_ptr, size);
- if (mid == left_ptr)
- mid = right_ptr;
- else if (mid == right_ptr)
- mid = left_ptr;
- left_ptr += size;
- right_ptr -= size;
- }
- else if (left_ptr == right_ptr)
- {
- left_ptr += size;
- right_ptr -= size;
- break;
- }
- }
- while (left_ptr <= right_ptr);
-
- /* Set up pointers for next iteration. First determine whether
- left and right partitions are below the threshold size. If so,
- ignore one or both. Otherwise, push the larger partition's
- bounds on the stack and continue sorting the smaller one. */
-
- if ((size_t) (right_ptr - lo) <= max_thresh)
- {
- if ((size_t) (hi - left_ptr) <= max_thresh)
- /* Ignore both small partitions. */
- POP (lo, hi);
- else
- /* Ignore small left partition. */
- lo = left_ptr;
- }
- else if ((size_t) (hi - left_ptr) <= max_thresh)
- /* Ignore small right partition. */
- hi = right_ptr;
- else if ((right_ptr - lo) > (hi - left_ptr))
- {
- /* Push larger left partition indices. */
- PUSH (lo, right_ptr);
- lo = left_ptr;
- }
- else
- {
- /* Push larger right partition indices. */
- PUSH (left_ptr, hi);
- hi = right_ptr;
- }
- }
- }
-
- /* Once the BASE_PTR array is partially sorted by quicksort the rest
- is completely sorted using insertion sort, since this is efficient
- for partitions below MAX_THRESH size. BASE_PTR points to the beginning
- of the array to sort, and END_PTR points at the very last element in
- the array (*not* one beyond it!). */
-
-#define min(x, y) ((x) < (y) ? (x) : (y))
-
- {
- char *const end_ptr = &base_ptr[size * (total_elems - 1)];
- char *tmp_ptr = base_ptr;
- char *thresh = min(end_ptr, base_ptr + max_thresh);
- char *run_ptr;
-
- /* Find smallest element in first threshold and place it at the
- array's beginning. This is the smallest array element,
- and the operation speeds up insertion sort's inner loop. */
-
- for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
- if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
- tmp_ptr = run_ptr;
-
- if (tmp_ptr != base_ptr)
- swap (tmp_ptr, base_ptr, size);
-
- /* Insertion sort, running from left-hand-side up to right-hand-side. */
-
- run_ptr = base_ptr + size;
- while ((run_ptr += size) <= end_ptr)
- {
- tmp_ptr = run_ptr - size;
- while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
- tmp_ptr -= size;
-
- tmp_ptr += size;
- if (tmp_ptr != run_ptr)
- {
- char *trav;
-
- trav = run_ptr + size;
- while (--trav >= run_ptr)
- {
- char c = *trav;
- char *hi, *lo;
-
- for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
- *hi = *lo;
- *hi = c;
- }
- }
- }
- }
-}
+#define R_VERSION
+#define R_FUNC __qsort_r
+#include <stdlib/qsort_common.c>
libc_hidden_def (__qsort_r)
weak_alias (__qsort_r, qsort_r)
-void
-qsort (void *b, size_t n, size_t s, __compar_fn_t cmp)
-{
- return __qsort_r (b, n, s, (__compar_d_fn_t) cmp, NULL);
-}
+#define R_FUNC qsort
+#include <stdlib/qsort_common.c>
+
libc_hidden_def (qsort)
new file mode 100644
@@ -0,0 +1,225 @@
+/* Common implementation for both qsort and qsort_r.
+ Copyright (C) 2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+/* If you consider tuning this algorithm, you should consult first:
+ Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
+ Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
+
+#ifdef R_VERSION
+# define R_CMP_TYPE __compar_d_fn_t
+# define R_CMP_ARG , void *arg
+# define R_CMP(p1, p2) cmp (p1, p2, arg)
+#else
+# define R_CMP_TYPE __compar_fn_t
+# define R_CMP_ARG
+# define R_CMP(p1, p2) cmp (p1, p2)
+#endif
+
+/* Order size using quicksort. This implementation incorporates
+ four optimizations discussed in Sedgewick:
+
+ 1. Non-recursive, using an explicit stack of pointer that store the
+ next array partition to sort. To save time, this maximum amount
+ of space required to store an array of SIZE_MAX is allocated on the
+ stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
+ only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
+ Pretty cheap, actually.
+
+ 2. Chose the pivot element using a median-of-three decision tree.
+ This reduces the probability of selecting a bad pivot value and
+ eliminates certain extraneous comparisons.
+
+ 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
+ insertion sort to order the MAX_THRESH items within each partition.
+ This is a big win, since insertion sort is faster for small, mostly
+ sorted array segments.
+
+ 4. The larger of the two sub-partitions is always pushed onto the
+ stack first, with the algorithm then concentrating on the
+ smaller partition. This *guarantees* no more than log (total_elems)
+ stack size is needed (actually O(1) in this case)! */
+
+void
+R_FUNC (void *pbase, size_t total_elems, size_t size, R_CMP_TYPE cmp R_CMP_ARG)
+{
+ if (total_elems == 0)
+ /* Avoid lossage with unsigned arithmetic below. */
+ return;
+
+ char *base_ptr = (char *) pbase;
+
+ const size_t max_thresh = MAX_THRESH * size;
+
+ swap_t swap = select_swap_func (pbase, size);
+
+ if (total_elems > MAX_THRESH)
+ {
+ char *lo = base_ptr;
+ char *hi = &lo[size * (total_elems - 1)];
+ stack_node stack[STACK_SIZE];
+ stack_node *top = stack;
+
+ PUSH (NULL, NULL);
+
+ while (STACK_NOT_EMPTY)
+ {
+ char *left_ptr;
+ char *right_ptr;
+
+ /* Select median value from among LO, MID, and HI. Rearrange
+ LO and HI so the three values are sorted. This lowers the
+ probability of picking a pathological pivot value and
+ skips a comparison for both the LEFT_PTR and RIGHT_PTR in
+ the while loops. */
+
+ char *mid = lo + size * ((hi - lo) / size >> 1);
+
+ if (R_CMP ((void *) mid, (void *) lo) < 0)
+ swap (mid, lo, size);
+ if (R_CMP ((void *) hi, (void *) mid) < 0)
+ swap (mid, hi, size);
+ else
+ goto jump_over;
+ if (R_CMP ((void *) mid, (void *) lo) < 0)
+ swap (mid, lo, size);
+ jump_over:;
+
+ left_ptr = lo + size;
+ right_ptr = hi - size;
+
+ /* Here's the famous ``collapse the walls'' section of quicksort.
+ Gotta like those tight inner loops! They are the main reason
+ that this algorithm runs much faster than others. */
+ do
+ {
+ while (R_CMP ((void *) left_ptr, (void *) mid) < 0)
+ left_ptr += size;
+
+ while (R_CMP ((void *) mid, (void *) right_ptr) < 0)
+ right_ptr -= size;
+
+ if (left_ptr < right_ptr)
+ {
+ swap (left_ptr, right_ptr, size);
+ if (mid == left_ptr)
+ mid = right_ptr;
+ else if (mid == right_ptr)
+ mid = left_ptr;
+ left_ptr += size;
+ right_ptr -= size;
+ }
+ else if (left_ptr == right_ptr)
+ {
+ left_ptr += size;
+ right_ptr -= size;
+ break;
+ }
+ }
+ while (left_ptr <= right_ptr);
+
+ /* Set up pointers for next iteration. First determine whether
+ left and right partitions are below the threshold size. If so,
+ ignore one or both. Otherwise, push the larger partition's
+ bounds on the stack and continue sorting the smaller one. */
+
+ if ((size_t) (right_ptr - lo) <= max_thresh)
+ {
+ if ((size_t) (hi - left_ptr) <= max_thresh)
+ /* Ignore both small partitions. */
+ POP (lo, hi);
+ else
+ /* Ignore small left partition. */
+ lo = left_ptr;
+ }
+ else if ((size_t) (hi - left_ptr) <= max_thresh)
+ /* Ignore small right partition. */
+ hi = right_ptr;
+ else if ((right_ptr - lo) > (hi - left_ptr))
+ {
+ /* Push larger left partition indices. */
+ PUSH (lo, right_ptr);
+ lo = left_ptr;
+ }
+ else
+ {
+ /* Push larger right partition indices. */
+ PUSH (left_ptr, hi);
+ hi = right_ptr;
+ }
+ }
+ }
+
+ /* Once the BASE_PTR array is partially sorted by quicksort the rest
+ is completely sorted using insertion sort, since this is efficient
+ for partitions below MAX_THRESH size. BASE_PTR points to the beginning
+ of the array to sort, and END_PTR points at the very last element in
+ the array (*not* one beyond it!). */
+
+ {
+ char *const end_ptr = &base_ptr[size * (total_elems - 1)];
+ char *tmp_ptr = base_ptr;
+ char *thresh = end_ptr < base_ptr + max_thresh ?
+ end_ptr : base_ptr + max_thresh;
+ char *run_ptr;
+
+ /* Find smallest element in first threshold and place it at the
+ array's beginning. This is the smallest array element,
+ and the operation speeds up insertion sort's inner loop. */
+
+ for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
+ if (R_CMP ((void *) run_ptr, (void *) tmp_ptr) < 0)
+ tmp_ptr = run_ptr;
+
+ if (tmp_ptr != base_ptr)
+ swap (tmp_ptr, base_ptr, size);
+
+ /* Insertion sort, running from left-hand-side up to right-hand-side. */
+
+ run_ptr = base_ptr + size;
+ while ((run_ptr += size) <= end_ptr)
+ {
+ tmp_ptr = run_ptr - size;
+ while (R_CMP ((void *) run_ptr, (void *) tmp_ptr) < 0)
+ tmp_ptr -= size;
+
+ tmp_ptr += size;
+ if (tmp_ptr != run_ptr)
+ {
+ char *trav;
+
+ trav = run_ptr + size;
+ while (--trav >= run_ptr)
+ {
+ char c = *trav;
+ char *hi, *lo;
+
+ for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
+ *hi = *lo;
+ *hi = c;
+ }
+ }
+ }
+ }
+}
+
+#undef R_NAME
+#undef R_CMP_TYPE
+#undef R_CMP_ARG
+#undef R_CMP
+#undef R_FUNC
+#undef R_VERSION