@@ -36,21 +36,22 @@
* How the whole thing works (courtesy of Christoffer Dall):
*
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
- * something is pending
- * - VGIC pending interrupts are stored on the vgic.irq_pending vgic
- * bitmap (this bitmap is updated by both user land ioctls and guest
- * mmio ops, and other in-kernel peripherals such as the
- * arch. timers) and indicate the 'wire' state.
+ * something is pending on the CPU interface.
+ * - Interrupts that are pending on the distributor are stored on the
+ * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
+ * ioctls and guest mmio ops, and other in-kernel peripherals such as the
+ * arch. timers).
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is
* recalculated
* - To calculate the oracle, we need info for each cpu from
* compute_pending_for_cpu, which considers:
* - PPI: dist->irq_pending & dist->irq_enable
* - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
- * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
+ * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
* registers, stored on each vcpu. We only keep one bit of
* information per interrupt, making sure that only one vcpu can
* accept the interrupt.
+ * - If any of the above state changes, we must recalculate the oracle.
* - The same is true when injecting an interrupt, except that we only
* consider a single interrupt at a time. The irq_spi_cpu array
* contains the target CPU for each SPI.
The VGIC virtual distributor implementation documentation was written a very long time ago, before the true nature of the beast had been partially absorbed into my bloodstream. Clarify the docs. Plus, it fixes an actual bug. ICFRn, pfff. Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> --- virt/kvm/arm/vgic.c | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-)