@@ -1312,6 +1312,183 @@ float64 float64_trunc_to_int(float64 a, float_status *s)
return float64_round_pack_canonical(pr, s);
}
+/*----------------------------------------------------------------------------
+| Returns the result of converting the floating-point value
+| `a' to the two's complement integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+static int64_t int64_pack_decomposed(decomposed_parts p, float_status *s)
+{
+ uint64_t r;
+
+ switch (p.cls) {
+ case float_class_snan:
+ case float_class_qnan:
+ return INT64_MAX;
+ case float_class_inf:
+ return p.sign ? INT64_MIN : INT64_MAX;
+ case float_class_zero:
+ return 0;
+ case float_class_normal:
+ if (p.exp < DECOMPOSED_BINARY_POINT) {
+ r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
+ } else if (p.exp < 64) {
+ r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
+ } else {
+ s->float_exception_flags |= float_flag_invalid;
+ r = UINT64_MAX;
+ }
+ if (p.sign) {
+ return r < - (uint64_t) INT64_MIN ? -r : INT64_MIN;
+ } else {
+ return r < INT64_MAX ? r : INT64_MAX;
+ }
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static int16_t int16_pack_decomposed(decomposed_parts p, float_status *s)
+{
+ int64_t r = int64_pack_decomposed(p, s);
+ if (r < INT16_MIN) {
+ s->float_exception_flags |= float_flag_invalid;
+ return INT16_MIN;
+ } else if (r > INT16_MAX) {
+ s->float_exception_flags |= float_flag_invalid;
+ return INT16_MAX;
+ }
+ return r;
+}
+
+static int32_t int32_pack_decomposed(decomposed_parts p, float_status *s)
+{
+ int64_t r = int64_pack_decomposed(p, s);
+ if (r < INT32_MIN) {
+ s->float_exception_flags |= float_flag_invalid;
+ return INT32_MIN;
+ } else if (r > INT32_MAX) {
+ s->float_exception_flags |= float_flag_invalid;
+ return INT32_MAX;
+ }
+ return r;
+}
+
+#define FLOAT_TO_INT(fsz, isz) \
+int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a, float_status *s) \
+{ \
+ decomposed_parts pa = float ## fsz ## _unpack_canonical(a, s); \
+ decomposed_parts pr = round_decomposed(pa, s->float_rounding_mode, s); \
+ return int ## isz ## _pack_decomposed(pr, s); \
+} \
+ \
+int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero \
+ (float ## fsz a, float_status *s) \
+{ \
+ decomposed_parts pa = float ## fsz ## _unpack_canonical(a, s); \
+ decomposed_parts pr = round_decomposed(pa, float_round_to_zero, s); \
+ return int ## isz ## _pack_decomposed(pr, s); \
+}
+
+FLOAT_TO_INT(16, 16)
+FLOAT_TO_INT(16, 32)
+FLOAT_TO_INT(16, 64)
+
+FLOAT_TO_INT(32, 16)
+FLOAT_TO_INT(32, 32)
+FLOAT_TO_INT(32, 64)
+
+FLOAT_TO_INT(64, 16)
+FLOAT_TO_INT(64, 32)
+FLOAT_TO_INT(64, 64)
+
+#undef FLOAT_TO_INT
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the floating-point value
+| `a' to the unsigned integer format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| unsigned integer is returned. Otherwise, if the conversion overflows, the
+| largest unsigned integer is returned. If the 'a' is negative, the result
+| is rounded and zero is returned; values that do not round to zero will
+| raise the inexact exception flag.
+*----------------------------------------------------------------------------*/
+
+static uint64_t uint64_pack_decomposed(decomposed_parts p, float_status *s)
+{
+ switch (p.cls) {
+ case float_class_snan:
+ case float_class_qnan:
+ return UINT64_MAX;
+ case float_class_inf:
+ return p.sign ? 0 : UINT64_MAX;
+ case float_class_zero:
+ return 0;
+ case float_class_normal:
+ if (p.sign) {
+ return 0;
+ }
+ if (p.exp < DECOMPOSED_BINARY_POINT) {
+ return p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
+ } else if (p.exp < 64) {
+ return p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
+ } else {
+ return UINT64_MAX;
+ }
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static uint16_t uint16_pack_decomposed(decomposed_parts p, float_status *s)
+{
+ uint64_t r = uint64_pack_decomposed(p, s);
+ return r > UINT16_MAX ? UINT16_MAX : r;
+}
+
+static uint32_t uint32_pack_decomposed(decomposed_parts p, float_status *s)
+{
+ uint64_t r = uint64_pack_decomposed(p, s);
+ return r > UINT32_MAX ? UINT32_MAX : r;
+}
+
+#define FLOAT_TO_UINT(fsz, isz) \
+uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a, float_status *s) \
+{ \
+ decomposed_parts pa = float ## fsz ## _unpack_canonical(a, s); \
+ decomposed_parts pr = round_decomposed(pa, s->float_rounding_mode, s); \
+ return uint ## isz ## _pack_decomposed(pr, s); \
+} \
+ \
+uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero \
+ (float ## fsz a, float_status *s) \
+{ \
+ decomposed_parts pa = float ## fsz ## _unpack_canonical(a, s); \
+ decomposed_parts pr = round_decomposed(pa, float_round_to_zero, s); \
+ return uint ## isz ## _pack_decomposed(pr, s); \
+}
+
+FLOAT_TO_UINT(16, 16)
+FLOAT_TO_UINT(16, 32)
+FLOAT_TO_UINT(16, 64)
+
+FLOAT_TO_UINT(32, 16)
+FLOAT_TO_UINT(32, 32)
+FLOAT_TO_UINT(32, 64)
+
+FLOAT_TO_UINT(64, 16)
+FLOAT_TO_UINT(64, 32)
+FLOAT_TO_UINT(64, 64)
+
+#undef FLOAT_TO_UINT
+
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
@@ -2663,288 +2840,8 @@ float128 uint64_to_float128(uint64_t a, float_status *status)
return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
}
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float32_to_int32(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64;
-
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= 0x00800000;
- shiftCount = 0xAF - aExp;
- aSig64 = aSig;
- aSig64 <<= 32;
- if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
- return roundAndPackInt32(aSign, aSig64, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float32_to_int32_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- int32_t z;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x9E;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xCF000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
- }
- return (int32_t) 0x80000000;
- }
- else if ( aExp <= 0x7E ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 16-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int16_t float32_to_int16_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- int32_t z;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x8E;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xC7000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return 0x7FFF;
- }
- }
- return (int32_t) 0xffff8000;
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- shiftCount -= 0x10;
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) {
- z = - z;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float32_to_int64(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64, aSigExtra;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = 0xBE - aExp;
- if ( shiftCount < 0 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- if ( aExp ) aSig |= 0x00800000;
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
- return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| unsigned integer is returned. Otherwise, if the conversion overflows, the
-| largest unsigned integer is returned. If the 'a' is negative, the result
-| is rounded and zero is returned; values that do not round to zero will
-| raise the inexact exception flag.
-*----------------------------------------------------------------------------*/
-
-uint64_t float32_to_uint64(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64, aSigExtra;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac(a);
- aExp = extractFloat32Exp(a);
- aSign = extractFloat32Sign(a);
- if ((aSign) && (aExp > 126)) {
- float_raise(float_flag_invalid, status);
- if (float32_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- shiftCount = 0xBE - aExp;
- if (aExp) {
- aSig |= 0x00800000;
- }
- if (shiftCount < 0) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
-
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
- return roundAndPackUint64(aSign, aSig64, aSigExtra, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the
-| conversion overflows, the largest unsigned integer is returned. If the
-| 'a' is negative, the result is rounded and zero is returned; values that do
-| not round to zero will raise the inexact flag.
-*----------------------------------------------------------------------------*/
-uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status)
-{
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- int64_t v = float32_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
-}
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
-| conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float32_to_int64_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64;
- int64_t z;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0xBE;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xDF000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- else if ( aExp <= 0x7E ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig64 = aSig | 0x00800000;
- aSig64 <<= 40;
- z = aSig64>>( - shiftCount );
- if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
@@ -3500,289 +3397,59 @@ int float32_le_quiet(float32 a, float32 b, float_status *status)
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_lt_quiet(float32 a, float32 b, float_status *status)
-{
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point values `a' and `b' cannot
-| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-int float32_unordered_quiet(float32 a, float32 b, float_status *status)
-{
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float64_to_int32(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x42C - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32(aSign, aSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float64_to_int32_round_to_zero(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if (aExp || aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 16-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int16_t float64_to_int16_round_to_zero(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x40E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) {
- aSign = 0;
- }
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if ( aExp || aSig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) {
- z = - z;
- }
- if ( ( (int16_t)z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
+| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int64_t float64_to_int64(float64 a, float_status *status)
+int float32_lt_quiet(float32 a, float32 b, float_status *status)
{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, aSigExtra;
- a = float64_squash_input_denormal(a, status);
+ flag aSign, bSign;
+ uint32_t av, bv;
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x43E < aExp ) {
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if (float32_is_signaling_nan(a, status)
+ || float32_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
}
- aSigExtra = 0;
- aSig <<= - shiftCount;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
+ return 0;
}
- return roundAndPackInt64(aSign, aSig, aSigExtra, status);
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ av = float32_val(a);
+ bv = float32_val(b);
+ if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
+ return ( av != bv ) && ( aSign ^ ( av < bv ) );
}
/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
+| Returns 1 if the single-precision floating-point values `a' and `b' cannot
+| be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
-int64_t float64_to_int64_round_to_zero(float64 a, float_status *status)
+int float32_unordered_quiet(float32 a, float32 b, float_status *status)
{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig;
- int64_t z;
- a = float64_squash_input_denormal(a, status);
+ a = float32_squash_input_denormal(a, status);
+ b = float32_squash_input_denormal(b, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = aExp - 0x433;
- if ( 0 <= shiftCount ) {
- if ( 0x43E <= aExp ) {
- if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- z = aSig<<shiftCount;
- }
- else {
- if ( aExp < 0x3FE ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if (float32_is_signaling_nan(a, status)
+ || float32_is_signaling_nan(b, status)) {
+ float_raise(float_flag_invalid, status);
}
+ return 1;
}
- if ( aSign ) z = - z;
- return z;
-
+ return 0;
}
+
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the single-precision floating-point format. The conversion is
@@ -7049,252 +6716,7 @@ float64 uint32_to_float64(uint32_t a, float_status *status)
return int64_to_float64(a, status);
}
-uint32_t float32_to_uint32(float32 a, float_status *status)
-{
- int64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int64(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status)
-{
- int64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-int16_t float32_to_int16(float32 a, float_status *status)
-{
- int32_t v;
- int16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int32(a, status);
- if (v < -0x8000) {
- res = -0x8000;
- } else if (v > 0x7fff) {
- res = 0x7fff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float32_to_uint16(float32 a, float_status *status)
-{
- int32_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int32(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float64_to_uint32(float64 a, float_status *status)
-{
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_uint64(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status)
-{
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_uint64_round_to_zero(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-int16_t float64_to_int16(float64 a, float_status *status)
-{
- int64_t v;
- int16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int32(a, status);
- if (v < -0x8000) {
- res = -0x8000;
- } else if (v > 0x7fff) {
- res = 0x7fff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float64_to_uint16(float64 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int32(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. If the conversion overflows, the
-| largest unsigned integer is returned. If 'a' is negative, the value is
-| rounded and zero is returned; negative values that do not round to zero
-| will raise the inexact exception.
-*----------------------------------------------------------------------------*/
-
-uint64_t float64_to_uint64(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, aSigExtra;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- if (aSign && (aExp > 1022)) {
- float_raise(float_flag_invalid, status);
- if (float64_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- if (aExp) {
- aSig |= LIT64(0x0010000000000000);
- }
- shiftCount = 0x433 - aExp;
- if (shiftCount <= 0) {
- if (0x43E < aExp) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
- aSigExtra = 0;
- aSig <<= -shiftCount;
- } else {
- shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
- }
- return roundAndPackUint64(aSign, aSig, aSigExtra, status);
-}
-uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status)
-{
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- uint64_t v = float64_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
-}
#define COMPARE(s, nan_exp) \
static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
@@ -341,6 +341,19 @@ float16 float32_to_float16(float32, flag, float_status *status);
float32 float16_to_float32(float16, flag, float_status *status);
float16 float64_to_float16(float64 a, flag ieee, float_status *status);
float64 float16_to_float64(float16 a, flag ieee, float_status *status);
+int16_t float16_to_int16(float16, float_status *status);
+uint16_t float16_to_uint16(float16 a, float_status *status);
+int16_t float16_to_int16_round_to_zero(float16, float_status *status);
+uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status);
+int32_t float16_to_int32(float16, float_status *status);
+uint32_t float16_to_uint32(float16 a, float_status *status);
+int32_t float16_to_int32_round_to_zero(float16, float_status *status);
+uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status);
+int64_t float16_to_int64(float16, float_status *status);
+uint64_t float16_to_uint64(float16 a, float_status *status);
+int64_t float16_to_int64_round_to_zero(float16, float_status *status);
+uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);
+float16 int16_to_float16(int16_t a, float_status *status);
/*----------------------------------------------------------------------------
| Software half-precision operations.
We share the common int64/uint64_pack_decomposed function across all the helpers and simply limit the final result depending on the final size. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> --- fpu/softfloat.c | 1000 ++++++++++------------------------------------- include/fpu/softfloat.h | 13 + 2 files changed, 224 insertions(+), 789 deletions(-) -- 2.15.1