new file mode 100644
@@ -0,0 +1,323 @@
+/* Software floating-point emulation.
+ Definitions for IEEE Double Precision
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Richard Henderson (rth@cygnus.com),
+ Jakub Jelinek (jj@ultra.linux.cz),
+ David S. Miller (davem@redhat.com) and
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_DOUBLE_H
+#define SOFT_FP_DOUBLE_H 1
+
+#if _FP_W_TYPE_SIZE < 32
+# error "Here's a nickel kid. Go buy yourself a real computer."
+#endif
+
+#if _FP_W_TYPE_SIZE < 64
+# define _FP_FRACTBITS_D (2 * _FP_W_TYPE_SIZE)
+# define _FP_FRACTBITS_DW_D (4 * _FP_W_TYPE_SIZE)
+#else
+# define _FP_FRACTBITS_D _FP_W_TYPE_SIZE
+# define _FP_FRACTBITS_DW_D (2 * _FP_W_TYPE_SIZE)
+#endif
+
+#define _FP_FRACBITS_D 53
+#define _FP_FRACXBITS_D (_FP_FRACTBITS_D - _FP_FRACBITS_D)
+#define _FP_WFRACBITS_D (_FP_WORKBITS + _FP_FRACBITS_D)
+#define _FP_WFRACXBITS_D (_FP_FRACTBITS_D - _FP_WFRACBITS_D)
+#define _FP_EXPBITS_D 11
+#define _FP_EXPBIAS_D 1023
+#define _FP_EXPMAX_D 2047
+
+#define _FP_QNANBIT_D \
+ ((_FP_W_TYPE) 1 << (_FP_FRACBITS_D-2) % _FP_W_TYPE_SIZE)
+#define _FP_QNANBIT_SH_D \
+ ((_FP_W_TYPE) 1 << (_FP_FRACBITS_D-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_D \
+ ((_FP_W_TYPE) 1 << (_FP_FRACBITS_D-1) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_SH_D \
+ ((_FP_W_TYPE) 1 << (_FP_FRACBITS_D-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
+#define _FP_OVERFLOW_D \
+ ((_FP_W_TYPE) 1 << _FP_WFRACBITS_D % _FP_W_TYPE_SIZE)
+
+#define _FP_WFRACBITS_DW_D (2 * _FP_WFRACBITS_D)
+#define _FP_WFRACXBITS_DW_D (_FP_FRACTBITS_DW_D - _FP_WFRACBITS_DW_D)
+#define _FP_HIGHBIT_DW_D \
+ ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_D - 1) % _FP_W_TYPE_SIZE)
+
+typedef float DFtype __attribute__ ((mode (DF)));
+
+#if _FP_W_TYPE_SIZE < 64
+
+union _FP_UNION_D
+{
+ DFtype flt;
+ struct _FP_STRUCT_LAYOUT
+ {
+# if __BYTE_ORDER == __BIG_ENDIAN
+ unsigned sign : 1;
+ unsigned exp : _FP_EXPBITS_D;
+ unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
+ unsigned frac0 : _FP_W_TYPE_SIZE;
+# else
+ unsigned frac0 : _FP_W_TYPE_SIZE;
+ unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
+ unsigned exp : _FP_EXPBITS_D;
+ unsigned sign : 1;
+# endif
+ } bits __attribute__ ((packed));
+};
+
+# define FP_DECL_D(X) _FP_DECL (2, X)
+# define FP_UNPACK_RAW_D(X, val) _FP_UNPACK_RAW_2 (D, X, (val))
+# define FP_UNPACK_RAW_DP(X, val) _FP_UNPACK_RAW_2_P (D, X, (val))
+# define FP_PACK_RAW_D(val, X) _FP_PACK_RAW_2 (D, (val), X)
+# define FP_PACK_RAW_DP(val, X) \
+ do \
+ { \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_2_P (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_D(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_2 (D, X, (val)); \
+ _FP_UNPACK_CANONICAL (D, 2, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_DP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_2_P (D, X, (val)); \
+ _FP_UNPACK_CANONICAL (D, 2, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_SEMIRAW_D(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_2 (D, X, (val)); \
+ _FP_UNPACK_SEMIRAW (D, 2, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_SEMIRAW_DP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_2_P (D, X, (val)); \
+ _FP_UNPACK_SEMIRAW (D, 2, X); \
+ } \
+ while (0)
+
+# define FP_PACK_D(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (D, 2, X); \
+ _FP_PACK_RAW_2 (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_DP(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (D, 2, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_2_P (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_SEMIRAW_D(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (D, 2, X); \
+ _FP_PACK_RAW_2 (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_SEMIRAW_DP(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (D, 2, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_2_P (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_ISSIGNAN_D(X) _FP_ISSIGNAN (D, 2, X)
+# define FP_NEG_D(R, X) _FP_NEG (D, 2, R, X)
+# define FP_ADD_D(R, X, Y) _FP_ADD (D, 2, R, X, Y)
+# define FP_SUB_D(R, X, Y) _FP_SUB (D, 2, R, X, Y)
+# define FP_MUL_D(R, X, Y) _FP_MUL (D, 2, R, X, Y)
+# define FP_DIV_D(R, X, Y) _FP_DIV (D, 2, R, X, Y)
+# define FP_SQRT_D(R, X) _FP_SQRT (D, 2, R, X)
+# define _FP_SQRT_MEAT_D(R, S, T, X, Q) _FP_SQRT_MEAT_2 (R, S, T, X, (Q))
+# define FP_FMA_D(R, X, Y, Z) _FP_FMA (D, 2, 4, R, X, Y, Z)
+
+# define FP_CMP_D(r, X, Y, un, ex) _FP_CMP (D, 2, (r), X, Y, (un), (ex))
+# define FP_CMP_EQ_D(r, X, Y, ex) _FP_CMP_EQ (D, 2, (r), X, Y, (ex))
+# define FP_CMP_UNORD_D(r, X, Y, ex) _FP_CMP_UNORD (D, 2, (r), X, Y, (ex))
+
+# define FP_TO_INT_D(r, X, rsz, rsg) _FP_TO_INT (D, 2, (r), X, (rsz), (rsg))
+# define FP_TO_INT_ROUND_D(r, X, rsz, rsg) \
+ _FP_TO_INT_ROUND (D, 2, (r), X, (rsz), (rsg))
+# define FP_FROM_INT_D(X, r, rs, rt) _FP_FROM_INT (D, 2, X, (r), (rs), rt)
+
+# define _FP_FRAC_HIGH_D(X) _FP_FRAC_HIGH_2 (X)
+# define _FP_FRAC_HIGH_RAW_D(X) _FP_FRAC_HIGH_2 (X)
+
+# define _FP_FRAC_HIGH_DW_D(X) _FP_FRAC_HIGH_4 (X)
+
+#else
+
+union _FP_UNION_D
+{
+ DFtype flt;
+ struct _FP_STRUCT_LAYOUT
+ {
+# if __BYTE_ORDER == __BIG_ENDIAN
+ unsigned sign : 1;
+ unsigned exp : _FP_EXPBITS_D;
+ _FP_W_TYPE frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
+# else
+ _FP_W_TYPE frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
+ unsigned exp : _FP_EXPBITS_D;
+ unsigned sign : 1;
+# endif
+ } bits __attribute__ ((packed));
+};
+
+# define FP_DECL_D(X) _FP_DECL (1, X)
+# define FP_UNPACK_RAW_D(X, val) _FP_UNPACK_RAW_1 (D, X, (val))
+# define FP_UNPACK_RAW_DP(X, val) _FP_UNPACK_RAW_1_P (D, X, (val))
+# define FP_PACK_RAW_D(val, X) _FP_PACK_RAW_1 (D, (val), X)
+# define FP_PACK_RAW_DP(val, X) \
+ do \
+ { \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_D(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1 (D, X, (val)); \
+ _FP_UNPACK_CANONICAL (D, 1, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_DP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1_P (D, X, (val)); \
+ _FP_UNPACK_CANONICAL (D, 1, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_SEMIRAW_D(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1 (D, X, (val)); \
+ _FP_UNPACK_SEMIRAW (D, 1, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_SEMIRAW_DP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1_P (D, X, (val)); \
+ _FP_UNPACK_SEMIRAW (D, 1, X); \
+ } \
+ while (0)
+
+# define FP_PACK_D(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (D, 1, X); \
+ _FP_PACK_RAW_1 (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_DP(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (D, 1, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_SEMIRAW_D(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (D, 1, X); \
+ _FP_PACK_RAW_1 (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_SEMIRAW_DP(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (D, 1, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (D, (val), X); \
+ } \
+ while (0)
+
+# define FP_ISSIGNAN_D(X) _FP_ISSIGNAN (D, 1, X)
+# define FP_NEG_D(R, X) _FP_NEG (D, 1, R, X)
+# define FP_ADD_D(R, X, Y) _FP_ADD (D, 1, R, X, Y)
+# define FP_SUB_D(R, X, Y) _FP_SUB (D, 1, R, X, Y)
+# define FP_MUL_D(R, X, Y) _FP_MUL (D, 1, R, X, Y)
+# define FP_DIV_D(R, X, Y) _FP_DIV (D, 1, R, X, Y)
+# define FP_SQRT_D(R, X) _FP_SQRT (D, 1, R, X)
+# define _FP_SQRT_MEAT_D(R, S, T, X, Q) _FP_SQRT_MEAT_1 (R, S, T, X, (Q))
+# define FP_FMA_D(R, X, Y, Z) _FP_FMA (D, 1, 2, R, X, Y, Z)
+
+/* The implementation of _FP_MUL_D and _FP_DIV_D should be chosen by
+ the target machine. */
+
+# define FP_CMP_D(r, X, Y, un, ex) _FP_CMP (D, 1, (r), X, Y, (un), (ex))
+# define FP_CMP_EQ_D(r, X, Y, ex) _FP_CMP_EQ (D, 1, (r), X, Y, (ex))
+# define FP_CMP_UNORD_D(r, X, Y, ex) _FP_CMP_UNORD (D, 1, (r), X, Y, (ex))
+
+# define FP_TO_INT_D(r, X, rsz, rsg) _FP_TO_INT (D, 1, (r), X, (rsz), (rsg))
+# define FP_TO_INT_ROUND_D(r, X, rsz, rsg) \
+ _FP_TO_INT_ROUND (D, 1, (r), X, (rsz), (rsg))
+# define FP_FROM_INT_D(X, r, rs, rt) _FP_FROM_INT (D, 1, X, (r), (rs), rt)
+
+# define _FP_FRAC_HIGH_D(X) _FP_FRAC_HIGH_1 (X)
+# define _FP_FRAC_HIGH_RAW_D(X) _FP_FRAC_HIGH_1 (X)
+
+# define _FP_FRAC_HIGH_DW_D(X) _FP_FRAC_HIGH_2 (X)
+
+#endif /* W_TYPE_SIZE < 64 */
+
+#endif /* !SOFT_FP_DOUBLE_H */
new file mode 100644
@@ -0,0 +1,170 @@
+/* Software floating-point emulation.
+ Definitions for IEEE Half Precision.
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_HALF_H
+#define SOFT_FP_HALF_H 1
+
+#if _FP_W_TYPE_SIZE < 32
+# error "Here's a nickel kid. Go buy yourself a real computer."
+#endif
+
+#define _FP_FRACTBITS_H (_FP_W_TYPE_SIZE)
+
+#define _FP_FRACTBITS_DW_H (_FP_W_TYPE_SIZE)
+
+#define _FP_FRACBITS_H 11
+#define _FP_FRACXBITS_H (_FP_FRACTBITS_H - _FP_FRACBITS_H)
+#define _FP_WFRACBITS_H (_FP_WORKBITS + _FP_FRACBITS_H)
+#define _FP_WFRACXBITS_H (_FP_FRACTBITS_H - _FP_WFRACBITS_H)
+#define _FP_EXPBITS_H 5
+#define _FP_EXPBIAS_H 15
+#define _FP_EXPMAX_H 31
+
+#define _FP_QNANBIT_H ((_FP_W_TYPE) 1 << (_FP_FRACBITS_H-2))
+#define _FP_QNANBIT_SH_H ((_FP_W_TYPE) 1 << (_FP_FRACBITS_H-2+_FP_WORKBITS))
+#define _FP_IMPLBIT_H ((_FP_W_TYPE) 1 << (_FP_FRACBITS_H-1))
+#define _FP_IMPLBIT_SH_H ((_FP_W_TYPE) 1 << (_FP_FRACBITS_H-1+_FP_WORKBITS))
+#define _FP_OVERFLOW_H ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_H))
+
+#define _FP_WFRACBITS_DW_H (2 * _FP_WFRACBITS_H)
+#define _FP_WFRACXBITS_DW_H (_FP_FRACTBITS_DW_H - _FP_WFRACBITS_DW_H)
+#define _FP_HIGHBIT_DW_H \
+ ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_H - 1) % _FP_W_TYPE_SIZE)
+
+/* The implementation of _FP_MUL_MEAT_H and _FP_DIV_MEAT_H should be
+ chosen by the target machine. */
+
+typedef float HFtype __attribute__ ((mode (HF)));
+
+union _FP_UNION_H
+{
+ HFtype flt;
+ struct _FP_STRUCT_LAYOUT
+ {
+#if __BYTE_ORDER == __BIG_ENDIAN
+ unsigned sign : 1;
+ unsigned exp : _FP_EXPBITS_H;
+ unsigned frac : _FP_FRACBITS_H - (_FP_IMPLBIT_H != 0);
+#else
+ unsigned frac : _FP_FRACBITS_H - (_FP_IMPLBIT_H != 0);
+ unsigned exp : _FP_EXPBITS_H;
+ unsigned sign : 1;
+#endif
+ } bits __attribute__ ((packed));
+};
+
+#define FP_DECL_H(X) _FP_DECL (1, X)
+#define FP_UNPACK_RAW_H(X, val) _FP_UNPACK_RAW_1 (H, X, (val))
+#define FP_UNPACK_RAW_HP(X, val) _FP_UNPACK_RAW_1_P (H, X, (val))
+#define FP_PACK_RAW_H(val, X) _FP_PACK_RAW_1 (H, (val), X)
+#define FP_PACK_RAW_HP(val, X) \
+ do \
+ { \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (H, (val), X); \
+ } \
+ while (0)
+
+#define FP_UNPACK_H(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1 (H, X, (val)); \
+ _FP_UNPACK_CANONICAL (H, 1, X); \
+ } \
+ while (0)
+
+#define FP_UNPACK_HP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1_P (H, X, (val)); \
+ _FP_UNPACK_CANONICAL (H, 1, X); \
+ } \
+ while (0)
+
+#define FP_UNPACK_SEMIRAW_H(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1 (H, X, (val)); \
+ _FP_UNPACK_SEMIRAW (H, 1, X); \
+ } \
+ while (0)
+
+#define FP_UNPACK_SEMIRAW_HP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1_P (H, X, (val)); \
+ _FP_UNPACK_SEMIRAW (H, 1, X); \
+ } \
+ while (0)
+
+#define FP_PACK_H(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (H, 1, X); \
+ _FP_PACK_RAW_1 (H, (val), X); \
+ } \
+ while (0)
+
+#define FP_PACK_HP(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (H, 1, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (H, (val), X); \
+ } \
+ while (0)
+
+#define FP_PACK_SEMIRAW_H(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (H, 1, X); \
+ _FP_PACK_RAW_1 (H, (val), X); \
+ } \
+ while (0)
+
+#define FP_PACK_SEMIRAW_HP(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (H, 1, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (H, (val), X); \
+ } \
+ while (0)
+
+#define FP_TO_INT_H(r, X, rsz, rsg) _FP_TO_INT (H, 1, (r), X, (rsz), (rsg))
+#define FP_TO_INT_ROUND_H(r, X, rsz, rsg) \
+ _FP_TO_INT_ROUND (H, 1, (r), X, (rsz), (rsg))
+#define FP_FROM_INT_H(X, r, rs, rt) _FP_FROM_INT (H, 1, X, (r), (rs), rt)
+
+/* HFmode arithmetic is not implemented. */
+
+#define _FP_FRAC_HIGH_H(X) _FP_FRAC_HIGH_1 (X)
+#define _FP_FRAC_HIGH_RAW_H(X) _FP_FRAC_HIGH_1 (X)
+#define _FP_FRAC_HIGH_DW_H(X) _FP_FRAC_HIGH_1 (X)
+
+#endif /* !SOFT_FP_HALF_H */
new file mode 100644
@@ -0,0 +1,369 @@
+/* Software floating-point emulation.
+ Basic one-word fraction declaration and manipulation.
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Richard Henderson (rth@cygnus.com),
+ Jakub Jelinek (jj@ultra.linux.cz),
+ David S. Miller (davem@redhat.com) and
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_OP_1_H
+#define SOFT_FP_OP_1_H 1
+
+#define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f _FP_ZERO_INIT
+#define _FP_FRAC_COPY_1(D, S) (D##_f = S##_f)
+#define _FP_FRAC_SET_1(X, I) (X##_f = I)
+#define _FP_FRAC_HIGH_1(X) (X##_f)
+#define _FP_FRAC_LOW_1(X) (X##_f)
+#define _FP_FRAC_WORD_1(X, w) (X##_f)
+
+#define _FP_FRAC_ADDI_1(X, I) (X##_f += I)
+#define _FP_FRAC_SLL_1(X, N) \
+ do \
+ { \
+ if (__builtin_constant_p (N) && (N) == 1) \
+ X##_f += X##_f; \
+ else \
+ X##_f <<= (N); \
+ } \
+ while (0)
+#define _FP_FRAC_SRL_1(X, N) (X##_f >>= N)
+
+/* Right shift with sticky-lsb. */
+#define _FP_FRAC_SRST_1(X, S, N, sz) __FP_FRAC_SRST_1 (X##_f, S, (N), (sz))
+#define _FP_FRAC_SRS_1(X, N, sz) __FP_FRAC_SRS_1 (X##_f, (N), (sz))
+
+#define __FP_FRAC_SRST_1(X, S, N, sz) \
+ do \
+ { \
+ S = (__builtin_constant_p (N) && (N) == 1 \
+ ? X & 1 \
+ : (X << (_FP_W_TYPE_SIZE - (N))) != 0); \
+ X = X >> (N); \
+ } \
+ while (0)
+
+#define __FP_FRAC_SRS_1(X, N, sz) \
+ (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1 \
+ ? X & 1 \
+ : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
+
+#define _FP_FRAC_ADD_1(R, X, Y) (R##_f = X##_f + Y##_f)
+#define _FP_FRAC_SUB_1(R, X, Y) (R##_f = X##_f - Y##_f)
+#define _FP_FRAC_DEC_1(X, Y) (X##_f -= Y##_f)
+#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ ((z), X##_f)
+
+/* Predicates. */
+#define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE) X##_f < 0)
+#define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
+#define _FP_FRAC_OVERP_1(fs, X) (X##_f & _FP_OVERFLOW_##fs)
+#define _FP_FRAC_CLEAR_OVERP_1(fs, X) (X##_f &= ~_FP_OVERFLOW_##fs)
+#define _FP_FRAC_HIGHBIT_DW_1(fs, X) (X##_f & _FP_HIGHBIT_DW_##fs)
+#define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
+#define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
+#define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
+
+#define _FP_ZEROFRAC_1 0
+#define _FP_MINFRAC_1 1
+#define _FP_MAXFRAC_1 (~(_FP_WS_TYPE) 0)
+
+/* Unpack the raw bits of a native fp value. Do not classify or
+ normalize the data. */
+
+#define _FP_UNPACK_RAW_1(fs, X, val) \
+ do \
+ { \
+ union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo; \
+ _FP_UNPACK_RAW_1_flo.flt = (val); \
+ \
+ X##_f = _FP_UNPACK_RAW_1_flo.bits.frac; \
+ X##_e = _FP_UNPACK_RAW_1_flo.bits.exp; \
+ X##_s = _FP_UNPACK_RAW_1_flo.bits.sign; \
+ } \
+ while (0)
+
+#define _FP_UNPACK_RAW_1_P(fs, X, val) \
+ do \
+ { \
+ union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo \
+ = (union _FP_UNION_##fs *) (val); \
+ \
+ X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac; \
+ X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp; \
+ X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign; \
+ } \
+ while (0)
+
+/* Repack the raw bits of a native fp value. */
+
+#define _FP_PACK_RAW_1(fs, val, X) \
+ do \
+ { \
+ union _FP_UNION_##fs _FP_PACK_RAW_1_flo; \
+ \
+ _FP_PACK_RAW_1_flo.bits.frac = X##_f; \
+ _FP_PACK_RAW_1_flo.bits.exp = X##_e; \
+ _FP_PACK_RAW_1_flo.bits.sign = X##_s; \
+ \
+ (val) = _FP_PACK_RAW_1_flo.flt; \
+ } \
+ while (0)
+
+#define _FP_PACK_RAW_1_P(fs, val, X) \
+ do \
+ { \
+ union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo \
+ = (union _FP_UNION_##fs *) (val); \
+ \
+ _FP_PACK_RAW_1_P_flo->bits.frac = X##_f; \
+ _FP_PACK_RAW_1_P_flo->bits.exp = X##_e; \
+ _FP_PACK_RAW_1_P_flo->bits.sign = X##_s; \
+ } \
+ while (0)
+
+
+/* Multiplication algorithms: */
+
+/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
+ multiplication immediately. */
+
+#define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y) \
+ do \
+ { \
+ R##_f = X##_f * Y##_f; \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
+ do \
+ { \
+ _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y); \
+ /* Normalize since we know where the msb of the multiplicands \
+ were (bit B), we know that the msb of the of the product is \
+ at either 2B or 2B-1. */ \
+ _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits)); \
+ } \
+ while (0)
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
+
+#define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit) \
+ do \
+ { \
+ doit (R##_f1, R##_f0, X##_f, Y##_f); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
+ do \
+ { \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z); \
+ _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z, \
+ X, Y, doit); \
+ /* Normalize since we know where the msb of the multiplicands \
+ were (bit B), we know that the msb of the of the product is \
+ at either 2B or 2B-1. */ \
+ _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1, \
+ 2*(wfracbits)); \
+ R##_f = _FP_MUL_MEAT_1_wide_Z_f0; \
+ } \
+ while (0)
+
+/* Finally, a simple widening multiply algorithm. What fun! */
+
+#define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y) \
+ do \
+ { \
+ _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl; \
+ _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl; \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a); \
+ \
+ /* Split the words in half. */ \
+ _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
+ _FP_MUL_MEAT_DW_1_hard_xl \
+ = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
+ _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
+ _FP_MUL_MEAT_DW_1_hard_yl \
+ = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
+ \
+ /* Multiply the pieces. */ \
+ R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl; \
+ _FP_MUL_MEAT_DW_1_hard_a_f0 \
+ = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl; \
+ _FP_MUL_MEAT_DW_1_hard_a_f1 \
+ = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh; \
+ R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh; \
+ \
+ /* Reassemble into two full words. */ \
+ if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1) \
+ < _FP_MUL_MEAT_DW_1_hard_a_f1) \
+ R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2); \
+ _FP_MUL_MEAT_DW_1_hard_a_f1 \
+ = _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2); \
+ _FP_MUL_MEAT_DW_1_hard_a_f0 \
+ = _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2); \
+ _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
+ do \
+ { \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z); \
+ _FP_MUL_MEAT_DW_1_hard ((wfracbits), \
+ _FP_MUL_MEAT_1_hard_z, X, Y); \
+ \
+ /* Normalize. */ \
+ _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z, \
+ (wfracbits) - 1, 2*(wfracbits)); \
+ R##_f = _FP_MUL_MEAT_1_hard_z_f0; \
+ } \
+ while (0)
+
+
+/* Division algorithms: */
+
+/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
+ division immediately. Give this macro either _FP_DIV_HELP_imm for
+ C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
+ choose will depend on what the compiler does with divrem4. */
+
+#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
+ do \
+ { \
+ _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r; \
+ X##_f <<= (X##_f < Y##_f \
+ ? R##_e--, _FP_WFRACBITS_##fs \
+ : _FP_WFRACBITS_##fs - 1); \
+ doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f); \
+ R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0); \
+ } \
+ while (0)
+
+/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
+ that may be useful in this situation. This first is for a primitive
+ that requires normalization, the second for one that does not. Look
+ for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
+
+#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
+ do \
+ { \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y; \
+ \
+ /* Normalize Y -- i.e. make the most significant bit set. */ \
+ _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs; \
+ \
+ /* Shift X op correspondingly high, that is, up one full word. */ \
+ if (X##_f < Y##_f) \
+ { \
+ R##_e--; \
+ _FP_DIV_MEAT_1_udiv_norm_nl = 0; \
+ _FP_DIV_MEAT_1_udiv_norm_nh = X##_f; \
+ } \
+ else \
+ { \
+ _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
+ _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1; \
+ } \
+ \
+ udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q, \
+ _FP_DIV_MEAT_1_udiv_norm_r, \
+ _FP_DIV_MEAT_1_udiv_norm_nh, \
+ _FP_DIV_MEAT_1_udiv_norm_nl, \
+ _FP_DIV_MEAT_1_udiv_norm_y); \
+ R##_f = (_FP_DIV_MEAT_1_udiv_norm_q \
+ | (_FP_DIV_MEAT_1_udiv_norm_r != 0)); \
+ } \
+ while (0)
+
+#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
+ do \
+ { \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r; \
+ if (X##_f < Y##_f) \
+ { \
+ R##_e--; \
+ _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs; \
+ _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs; \
+ } \
+ else \
+ { \
+ _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
+ _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
+ } \
+ udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r, \
+ _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl, \
+ Y##_f); \
+ R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0); \
+ } \
+ while (0)
+
+
+/* Square root algorithms:
+ We have just one right now, maybe Newton approximation
+ should be added for those machines where division is fast. */
+
+#define _FP_SQRT_MEAT_1(R, S, T, X, q) \
+ do \
+ { \
+ while ((q) != _FP_WORK_ROUND) \
+ { \
+ T##_f = S##_f + (q); \
+ if (T##_f <= X##_f) \
+ { \
+ S##_f = T##_f + (q); \
+ X##_f -= T##_f; \
+ R##_f += (q); \
+ } \
+ _FP_FRAC_SLL_1 (X, 1); \
+ (q) >>= 1; \
+ } \
+ if (X##_f) \
+ { \
+ if (S##_f < X##_f) \
+ R##_f |= _FP_WORK_ROUND; \
+ R##_f |= _FP_WORK_STICKY; \
+ } \
+ } \
+ while (0)
+
+/* Assembly/disassembly for converting to/from integral types.
+ No shifting or overflow handled here. */
+
+#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) ((r) = X##_f)
+#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = (r))
+
+
+/* Convert FP values between word sizes. */
+
+#define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f)
+
+#endif /* !SOFT_FP_OP_1_H */
new file mode 100644
@@ -0,0 +1,705 @@
+/* Software floating-point emulation.
+ Basic two-word fraction declaration and manipulation.
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Richard Henderson (rth@cygnus.com),
+ Jakub Jelinek (jj@ultra.linux.cz),
+ David S. Miller (davem@redhat.com) and
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_OP_2_H
+#define SOFT_FP_OP_2_H 1
+
+#define _FP_FRAC_DECL_2(X) \
+ _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
+#define _FP_FRAC_COPY_2(D, S) (D##_f0 = S##_f0, D##_f1 = S##_f1)
+#define _FP_FRAC_SET_2(X, I) __FP_FRAC_SET_2 (X, I)
+#define _FP_FRAC_HIGH_2(X) (X##_f1)
+#define _FP_FRAC_LOW_2(X) (X##_f0)
+#define _FP_FRAC_WORD_2(X, w) (X##_f##w)
+
+#define _FP_FRAC_SLL_2(X, N) \
+ (void) (((N) < _FP_W_TYPE_SIZE) \
+ ? ({ \
+ if (__builtin_constant_p (N) && (N) == 1) \
+ { \
+ X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE) (X##_f0)) < 0); \
+ X##_f0 += X##_f0; \
+ } \
+ else \
+ { \
+ X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \
+ X##_f0 <<= (N); \
+ } \
+ 0; \
+ }) \
+ : ({ \
+ X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \
+ X##_f0 = 0; \
+ }))
+
+
+#define _FP_FRAC_SRL_2(X, N) \
+ (void) (((N) < _FP_W_TYPE_SIZE) \
+ ? ({ \
+ X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \
+ X##_f1 >>= (N); \
+ }) \
+ : ({ \
+ X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \
+ X##_f1 = 0; \
+ }))
+
+/* Right shift with sticky-lsb. */
+#define _FP_FRAC_SRST_2(X, S, N, sz) \
+ (void) (((N) < _FP_W_TYPE_SIZE) \
+ ? ({ \
+ S = (__builtin_constant_p (N) && (N) == 1 \
+ ? X##_f0 & 1 \
+ : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0); \
+ X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N)); \
+ X##_f1 >>= (N); \
+ }) \
+ : ({ \
+ S = ((((N) == _FP_W_TYPE_SIZE \
+ ? 0 \
+ : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \
+ | X##_f0) != 0); \
+ X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE)); \
+ X##_f1 = 0; \
+ }))
+
+#define _FP_FRAC_SRS_2(X, N, sz) \
+ (void) (((N) < _FP_W_TYPE_SIZE) \
+ ? ({ \
+ X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \
+ | (__builtin_constant_p (N) && (N) == 1 \
+ ? X##_f0 & 1 \
+ : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
+ X##_f1 >>= (N); \
+ }) \
+ : ({ \
+ X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) \
+ | ((((N) == _FP_W_TYPE_SIZE \
+ ? 0 \
+ : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \
+ | X##_f0) != 0)); \
+ X##_f1 = 0; \
+ }))
+
+#define _FP_FRAC_ADDI_2(X, I) \
+ __FP_FRAC_ADDI_2 (X##_f1, X##_f0, I)
+
+#define _FP_FRAC_ADD_2(R, X, Y) \
+ __FP_FRAC_ADD_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
+
+#define _FP_FRAC_SUB_2(R, X, Y) \
+ __FP_FRAC_SUB_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
+
+#define _FP_FRAC_DEC_2(X, Y) \
+ __FP_FRAC_DEC_2 (X##_f1, X##_f0, Y##_f1, Y##_f0)
+
+#define _FP_FRAC_CLZ_2(R, X) \
+ do \
+ { \
+ if (X##_f1) \
+ __FP_CLZ ((R), X##_f1); \
+ else \
+ { \
+ __FP_CLZ ((R), X##_f0); \
+ (R) += _FP_W_TYPE_SIZE; \
+ } \
+ } \
+ while (0)
+
+/* Predicates. */
+#define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE) X##_f1 < 0)
+#define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0)
+#define _FP_FRAC_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs)
+#define _FP_FRAC_CLEAR_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs)
+#define _FP_FRAC_HIGHBIT_DW_2(fs, X) \
+ (_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs)
+#define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0)
+#define _FP_FRAC_GT_2(X, Y) \
+ (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0))
+#define _FP_FRAC_GE_2(X, Y) \
+ (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0))
+
+#define _FP_ZEROFRAC_2 0, 0
+#define _FP_MINFRAC_2 0, 1
+#define _FP_MAXFRAC_2 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0)
+
+/* Internals. */
+
+#define __FP_FRAC_SET_2(X, I1, I0) (X##_f0 = I0, X##_f1 = I1)
+
+#define __FP_CLZ_2(R, xh, xl) \
+ do \
+ { \
+ if (xh) \
+ __FP_CLZ ((R), xh); \
+ else \
+ { \
+ __FP_CLZ ((R), xl); \
+ (R) += _FP_W_TYPE_SIZE; \
+ } \
+ } \
+ while (0)
+
+#if 0
+
+# ifndef __FP_FRAC_ADDI_2
+# define __FP_FRAC_ADDI_2(xh, xl, i) \
+ (xh += ((xl += i) < i))
+# endif
+# ifndef __FP_FRAC_ADD_2
+# define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \
+ (rh = xh + yh + ((rl = xl + yl) < xl))
+# endif
+# ifndef __FP_FRAC_SUB_2
+# define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \
+ (rh = xh - yh - ((rl = xl - yl) > xl))
+# endif
+# ifndef __FP_FRAC_DEC_2
+# define __FP_FRAC_DEC_2(xh, xl, yh, yl) \
+ do \
+ { \
+ UWtype __FP_FRAC_DEC_2_t = xl; \
+ xh -= yh + ((xl -= yl) > __FP_FRAC_DEC_2_t); \
+ } \
+ while (0)
+# endif
+
+#else
+
+# undef __FP_FRAC_ADDI_2
+# define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa (xh, xl, xh, xl, 0, i)
+# undef __FP_FRAC_ADD_2
+# define __FP_FRAC_ADD_2 add_ssaaaa
+# undef __FP_FRAC_SUB_2
+# define __FP_FRAC_SUB_2 sub_ddmmss
+# undef __FP_FRAC_DEC_2
+# define __FP_FRAC_DEC_2(xh, xl, yh, yl) \
+ sub_ddmmss (xh, xl, xh, xl, yh, yl)
+
+#endif
+
+/* Unpack the raw bits of a native fp value. Do not classify or
+ normalize the data. */
+
+#define _FP_UNPACK_RAW_2(fs, X, val) \
+ do \
+ { \
+ union _FP_UNION_##fs _FP_UNPACK_RAW_2_flo; \
+ _FP_UNPACK_RAW_2_flo.flt = (val); \
+ \
+ X##_f0 = _FP_UNPACK_RAW_2_flo.bits.frac0; \
+ X##_f1 = _FP_UNPACK_RAW_2_flo.bits.frac1; \
+ X##_e = _FP_UNPACK_RAW_2_flo.bits.exp; \
+ X##_s = _FP_UNPACK_RAW_2_flo.bits.sign; \
+ } \
+ while (0)
+
+#define _FP_UNPACK_RAW_2_P(fs, X, val) \
+ do \
+ { \
+ union _FP_UNION_##fs *_FP_UNPACK_RAW_2_P_flo \
+ = (union _FP_UNION_##fs *) (val); \
+ \
+ X##_f0 = _FP_UNPACK_RAW_2_P_flo->bits.frac0; \
+ X##_f1 = _FP_UNPACK_RAW_2_P_flo->bits.frac1; \
+ X##_e = _FP_UNPACK_RAW_2_P_flo->bits.exp; \
+ X##_s = _FP_UNPACK_RAW_2_P_flo->bits.sign; \
+ } \
+ while (0)
+
+
+/* Repack the raw bits of a native fp value. */
+
+#define _FP_PACK_RAW_2(fs, val, X) \
+ do \
+ { \
+ union _FP_UNION_##fs _FP_PACK_RAW_2_flo; \
+ \
+ _FP_PACK_RAW_2_flo.bits.frac0 = X##_f0; \
+ _FP_PACK_RAW_2_flo.bits.frac1 = X##_f1; \
+ _FP_PACK_RAW_2_flo.bits.exp = X##_e; \
+ _FP_PACK_RAW_2_flo.bits.sign = X##_s; \
+ \
+ (val) = _FP_PACK_RAW_2_flo.flt; \
+ } \
+ while (0)
+
+#define _FP_PACK_RAW_2_P(fs, val, X) \
+ do \
+ { \
+ union _FP_UNION_##fs *_FP_PACK_RAW_2_P_flo \
+ = (union _FP_UNION_##fs *) (val); \
+ \
+ _FP_PACK_RAW_2_P_flo->bits.frac0 = X##_f0; \
+ _FP_PACK_RAW_2_P_flo->bits.frac1 = X##_f1; \
+ _FP_PACK_RAW_2_P_flo->bits.exp = X##_e; \
+ _FP_PACK_RAW_2_P_flo->bits.sign = X##_s; \
+ } \
+ while (0)
+
+
+/* Multiplication algorithms: */
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
+
+#define _FP_MUL_MEAT_DW_2_wide(wfracbits, R, X, Y, doit) \
+ do \
+ { \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_b); \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_c); \
+ \
+ doit (_FP_FRAC_WORD_4 (R, 1), _FP_FRAC_WORD_4 (R, 0), \
+ X##_f0, Y##_f0); \
+ doit (_FP_MUL_MEAT_DW_2_wide_b_f1, _FP_MUL_MEAT_DW_2_wide_b_f0, \
+ X##_f0, Y##_f1); \
+ doit (_FP_MUL_MEAT_DW_2_wide_c_f1, _FP_MUL_MEAT_DW_2_wide_c_f0, \
+ X##_f1, Y##_f0); \
+ doit (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ X##_f1, Y##_f1); \
+ \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_FRAC_WORD_4 (R, 1), 0, \
+ _FP_MUL_MEAT_DW_2_wide_b_f1, \
+ _FP_MUL_MEAT_DW_2_wide_b_f0, \
+ _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_FRAC_WORD_4 (R, 1)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_FRAC_WORD_4 (R, 1), 0, \
+ _FP_MUL_MEAT_DW_2_wide_c_f1, \
+ _FP_MUL_MEAT_DW_2_wide_c_f0, \
+ _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_FRAC_WORD_4 (R, 1)); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit) \
+ do \
+ { \
+ _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_z); \
+ \
+ _FP_MUL_MEAT_DW_2_wide ((wfracbits), _FP_MUL_MEAT_2_wide_z, \
+ X, Y, doit); \
+ \
+ /* Normalize since we know where the msb of the multiplicands \
+ were (bit B), we know that the msb of the of the product is \
+ at either 2B or 2B-1. */ \
+ _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_z, (wfracbits)-1, \
+ 2*(wfracbits)); \
+ R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 0); \
+ R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 1); \
+ } \
+ while (0)
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication.
+ Do only 3 multiplications instead of four. This one is for machines
+ where multiplication is much more expensive than subtraction. */
+
+#define _FP_MUL_MEAT_DW_2_wide_3mul(wfracbits, R, X, Y, doit) \
+ do \
+ { \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_b); \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_c); \
+ _FP_W_TYPE _FP_MUL_MEAT_DW_2_wide_3mul_d; \
+ int _FP_MUL_MEAT_DW_2_wide_3mul_c1; \
+ int _FP_MUL_MEAT_DW_2_wide_3mul_c2; \
+ \
+ _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 = X##_f0 + X##_f1; \
+ _FP_MUL_MEAT_DW_2_wide_3mul_c1 \
+ = _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 < X##_f0; \
+ _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 = Y##_f0 + Y##_f1; \
+ _FP_MUL_MEAT_DW_2_wide_3mul_c2 \
+ = _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 < Y##_f0; \
+ doit (_FP_MUL_MEAT_DW_2_wide_3mul_d, _FP_FRAC_WORD_4 (R, 0), \
+ X##_f0, Y##_f0); \
+ doit (_FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1), \
+ _FP_MUL_MEAT_DW_2_wide_3mul_b_f0, \
+ _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \
+ doit (_FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \
+ _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, X##_f1, Y##_f1); \
+ \
+ _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 \
+ &= -_FP_MUL_MEAT_DW_2_wide_3mul_c2; \
+ _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 \
+ &= -_FP_MUL_MEAT_DW_2_wide_3mul_c1; \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_FRAC_WORD_4 (R, 1), \
+ (_FP_MUL_MEAT_DW_2_wide_3mul_c1 \
+ & _FP_MUL_MEAT_DW_2_wide_3mul_c2), 0, \
+ _FP_MUL_MEAT_DW_2_wide_3mul_d, \
+ 0, _FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1)); \
+ __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_MUL_MEAT_DW_2_wide_3mul_b_f0); \
+ __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \
+ __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_FRAC_WORD_4 (R, 1), \
+ 0, _FP_MUL_MEAT_DW_2_wide_3mul_d, \
+ _FP_FRAC_WORD_4 (R, 0)); \
+ __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_FRAC_WORD_4 (R, 1), 0, \
+ _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \
+ _FP_MUL_MEAT_DW_2_wide_3mul_c_f0); \
+ __FP_FRAC_ADD_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \
+ _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \
+ _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, \
+ _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2)); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit) \
+ do \
+ { \
+ _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_3mul_z); \
+ \
+ _FP_MUL_MEAT_DW_2_wide_3mul ((wfracbits), \
+ _FP_MUL_MEAT_2_wide_3mul_z, \
+ X, Y, doit); \
+ \
+ /* Normalize since we know where the msb of the multiplicands \
+ were (bit B), we know that the msb of the of the product is \
+ at either 2B or 2B-1. */ \
+ _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_3mul_z, \
+ (wfracbits)-1, 2*(wfracbits)); \
+ R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 0); \
+ R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 1); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_DW_2_gmp(wfracbits, R, X, Y) \
+ do \
+ { \
+ _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_x[2]; \
+ _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_y[2]; \
+ _FP_MUL_MEAT_DW_2_gmp_x[0] = X##_f0; \
+ _FP_MUL_MEAT_DW_2_gmp_x[1] = X##_f1; \
+ _FP_MUL_MEAT_DW_2_gmp_y[0] = Y##_f0; \
+ _FP_MUL_MEAT_DW_2_gmp_y[1] = Y##_f1; \
+ \
+ mpn_mul_n (R##_f, _FP_MUL_MEAT_DW_2_gmp_x, \
+ _FP_MUL_MEAT_DW_2_gmp_y, 2); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \
+ do \
+ { \
+ _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_gmp_z); \
+ \
+ _FP_MUL_MEAT_DW_2_gmp ((wfracbits), _FP_MUL_MEAT_2_gmp_z, X, Y); \
+ \
+ /* Normalize since we know where the msb of the multiplicands \
+ were (bit B), we know that the msb of the of the product is \
+ at either 2B or 2B-1. */ \
+ _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_gmp_z, (wfracbits)-1, \
+ 2*(wfracbits)); \
+ R##_f0 = _FP_MUL_MEAT_2_gmp_z_f[0]; \
+ R##_f1 = _FP_MUL_MEAT_2_gmp_z_f[1]; \
+ } \
+ while (0)
+
+/* Do at most 120x120=240 bits multiplication using double floating
+ point multiplication. This is useful if floating point
+ multiplication has much bigger throughput than integer multiply.
+ It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits
+ between 106 and 120 only.
+ Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set.
+ SETFETZ is a macro which will disable all FPU exceptions and set rounding
+ towards zero, RESETFE should optionally reset it back. */
+
+#define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \
+ do \
+ { \
+ static const double _const[] = \
+ { \
+ /* 2^-24 */ 5.9604644775390625e-08, \
+ /* 2^-48 */ 3.5527136788005009e-15, \
+ /* 2^-72 */ 2.1175823681357508e-22, \
+ /* 2^-96 */ 1.2621774483536189e-29, \
+ /* 2^28 */ 2.68435456e+08, \
+ /* 2^4 */ 1.600000e+01, \
+ /* 2^-20 */ 9.5367431640625e-07, \
+ /* 2^-44 */ 5.6843418860808015e-14, \
+ /* 2^-68 */ 3.3881317890172014e-21, \
+ /* 2^-92 */ 2.0194839173657902e-28, \
+ /* 2^-116 */ 1.2037062152420224e-35 \
+ }; \
+ double _a240, _b240, _c240, _d240, _e240, _f240, \
+ _g240, _h240, _i240, _j240, _k240; \
+ union { double d; UDItype i; } _l240, _m240, _n240, _o240, \
+ _p240, _q240, _r240, _s240; \
+ UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \
+ \
+ _FP_STATIC_ASSERT ((wfracbits) >= 106 && (wfracbits) <= 120, \
+ "wfracbits out of range"); \
+ \
+ setfetz; \
+ \
+ _e240 = (double) (long) (X##_f0 & 0xffffff); \
+ _j240 = (double) (long) (Y##_f0 & 0xffffff); \
+ _d240 = (double) (long) ((X##_f0 >> 24) & 0xffffff); \
+ _i240 = (double) (long) ((Y##_f0 >> 24) & 0xffffff); \
+ _c240 = (double) (long) (((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \
+ _h240 = (double) (long) (((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \
+ _b240 = (double) (long) ((X##_f1 >> 8) & 0xffffff); \
+ _g240 = (double) (long) ((Y##_f1 >> 8) & 0xffffff); \
+ _a240 = (double) (long) (X##_f1 >> 32); \
+ _f240 = (double) (long) (Y##_f1 >> 32); \
+ _e240 *= _const[3]; \
+ _j240 *= _const[3]; \
+ _d240 *= _const[2]; \
+ _i240 *= _const[2]; \
+ _c240 *= _const[1]; \
+ _h240 *= _const[1]; \
+ _b240 *= _const[0]; \
+ _g240 *= _const[0]; \
+ _s240.d = _e240*_j240; \
+ _r240.d = _d240*_j240 + _e240*_i240; \
+ _q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240; \
+ _p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240; \
+ _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240; \
+ _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \
+ _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \
+ _l240.d = _a240*_g240 + _b240*_f240; \
+ _k240 = _a240*_f240; \
+ _r240.d += _s240.d; \
+ _q240.d += _r240.d; \
+ _p240.d += _q240.d; \
+ _o240.d += _p240.d; \
+ _n240.d += _o240.d; \
+ _m240.d += _n240.d; \
+ _l240.d += _m240.d; \
+ _k240 += _l240.d; \
+ _s240.d -= ((_const[10]+_s240.d)-_const[10]); \
+ _r240.d -= ((_const[9]+_r240.d)-_const[9]); \
+ _q240.d -= ((_const[8]+_q240.d)-_const[8]); \
+ _p240.d -= ((_const[7]+_p240.d)-_const[7]); \
+ _o240.d += _const[7]; \
+ _n240.d += _const[6]; \
+ _m240.d += _const[5]; \
+ _l240.d += _const[4]; \
+ if (_s240.d != 0.0) \
+ _y240 = 1; \
+ if (_r240.d != 0.0) \
+ _y240 = 1; \
+ if (_q240.d != 0.0) \
+ _y240 = 1; \
+ if (_p240.d != 0.0) \
+ _y240 = 1; \
+ _t240 = (DItype) _k240; \
+ _u240 = _l240.i; \
+ _v240 = _m240.i; \
+ _w240 = _n240.i; \
+ _x240 = _o240.i; \
+ R##_f1 = ((_t240 << (128 - (wfracbits - 1))) \
+ | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104))); \
+ R##_f0 = (((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \
+ | ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \
+ | ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \
+ | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \
+ | _y240); \
+ resetfe; \
+ } \
+ while (0)
+
+/* Division algorithms: */
+
+#define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \
+ do \
+ { \
+ _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f2; \
+ _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f1; \
+ _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f0; \
+ _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f1; \
+ _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f0; \
+ _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f1; \
+ _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f0; \
+ if (_FP_FRAC_GE_2 (X, Y)) \
+ { \
+ _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1 >> 1; \
+ _FP_DIV_MEAT_2_udiv_n_f1 \
+ = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \
+ _FP_DIV_MEAT_2_udiv_n_f0 \
+ = X##_f0 << (_FP_W_TYPE_SIZE - 1); \
+ } \
+ else \
+ { \
+ R##_e--; \
+ _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1; \
+ _FP_DIV_MEAT_2_udiv_n_f1 = X##_f0; \
+ _FP_DIV_MEAT_2_udiv_n_f0 = 0; \
+ } \
+ \
+ /* Normalize, i.e. make the most significant bit of the \
+ denominator set. */ \
+ _FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs); \
+ \
+ udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1, \
+ _FP_DIV_MEAT_2_udiv_n_f2, _FP_DIV_MEAT_2_udiv_n_f1, \
+ Y##_f1); \
+ umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, _FP_DIV_MEAT_2_udiv_m_f0, \
+ R##_f1, Y##_f0); \
+ _FP_DIV_MEAT_2_udiv_r_f0 = _FP_DIV_MEAT_2_udiv_n_f0; \
+ if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, _FP_DIV_MEAT_2_udiv_r)) \
+ { \
+ R##_f1--; \
+ _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \
+ _FP_DIV_MEAT_2_udiv_r); \
+ if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \
+ && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \
+ _FP_DIV_MEAT_2_udiv_r)) \
+ { \
+ R##_f1--; \
+ _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \
+ _FP_DIV_MEAT_2_udiv_r); \
+ } \
+ } \
+ _FP_FRAC_DEC_2 (_FP_DIV_MEAT_2_udiv_r, _FP_DIV_MEAT_2_udiv_m); \
+ \
+ if (_FP_DIV_MEAT_2_udiv_r_f1 == Y##_f1) \
+ { \
+ /* This is a special case, not an optimization \
+ (_FP_DIV_MEAT_2_udiv_r/Y##_f1 would not fit into UWtype). \
+ As _FP_DIV_MEAT_2_udiv_r is guaranteed to be < Y, \
+ R##_f0 can be either (UWtype)-1 or (UWtype)-2. But as we \
+ know what kind of bits it is (sticky, guard, round), \
+ we don't care. We also don't care what the reminder is, \
+ because the guard bit will be set anyway. -jj */ \
+ R##_f0 = -1; \
+ } \
+ else \
+ { \
+ udiv_qrnnd (R##_f0, _FP_DIV_MEAT_2_udiv_r_f1, \
+ _FP_DIV_MEAT_2_udiv_r_f1, \
+ _FP_DIV_MEAT_2_udiv_r_f0, Y##_f1); \
+ umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, \
+ _FP_DIV_MEAT_2_udiv_m_f0, R##_f0, Y##_f0); \
+ _FP_DIV_MEAT_2_udiv_r_f0 = 0; \
+ if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \
+ _FP_DIV_MEAT_2_udiv_r)) \
+ { \
+ R##_f0--; \
+ _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \
+ _FP_DIV_MEAT_2_udiv_r); \
+ if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \
+ && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \
+ _FP_DIV_MEAT_2_udiv_r)) \
+ { \
+ R##_f0--; \
+ _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \
+ _FP_DIV_MEAT_2_udiv_r); \
+ } \
+ } \
+ if (!_FP_FRAC_EQ_2 (_FP_DIV_MEAT_2_udiv_r, \
+ _FP_DIV_MEAT_2_udiv_m)) \
+ R##_f0 |= _FP_WORK_STICKY; \
+ } \
+ } \
+ while (0)
+
+
+/* Square root algorithms:
+ We have just one right now, maybe Newton approximation
+ should be added for those machines where division is fast. */
+
+#define _FP_SQRT_MEAT_2(R, S, T, X, q) \
+ do \
+ { \
+ while (q) \
+ { \
+ T##_f1 = S##_f1 + (q); \
+ if (T##_f1 <= X##_f1) \
+ { \
+ S##_f1 = T##_f1 + (q); \
+ X##_f1 -= T##_f1; \
+ R##_f1 += (q); \
+ } \
+ _FP_FRAC_SLL_2 (X, 1); \
+ (q) >>= 1; \
+ } \
+ (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
+ while ((q) != _FP_WORK_ROUND) \
+ { \
+ T##_f0 = S##_f0 + (q); \
+ T##_f1 = S##_f1; \
+ if (T##_f1 < X##_f1 \
+ || (T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \
+ { \
+ S##_f0 = T##_f0 + (q); \
+ S##_f1 += (T##_f0 > S##_f0); \
+ _FP_FRAC_DEC_2 (X, T); \
+ R##_f0 += (q); \
+ } \
+ _FP_FRAC_SLL_2 (X, 1); \
+ (q) >>= 1; \
+ } \
+ if (X##_f0 | X##_f1) \
+ { \
+ if (S##_f1 < X##_f1 \
+ || (S##_f1 == X##_f1 && S##_f0 < X##_f0)) \
+ R##_f0 |= _FP_WORK_ROUND; \
+ R##_f0 |= _FP_WORK_STICKY; \
+ } \
+ } \
+ while (0)
+
+
+/* Assembly/disassembly for converting to/from integral types.
+ No shifting or overflow handled here. */
+
+#define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \
+ (void) (((rsize) <= _FP_W_TYPE_SIZE) \
+ ? ({ (r) = X##_f0; }) \
+ : ({ \
+ (r) = X##_f1; \
+ (r) <<= _FP_W_TYPE_SIZE; \
+ (r) += X##_f0; \
+ }))
+
+#define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \
+ do \
+ { \
+ X##_f0 = (r); \
+ X##_f1 = ((rsize) <= _FP_W_TYPE_SIZE \
+ ? 0 \
+ : (r) >> _FP_W_TYPE_SIZE); \
+ } \
+ while (0)
+
+/* Convert FP values between word sizes. */
+
+#define _FP_FRAC_COPY_1_2(D, S) (D##_f = S##_f0)
+
+#define _FP_FRAC_COPY_2_1(D, S) ((D##_f0 = S##_f), (D##_f1 = 0))
+
+#define _FP_FRAC_COPY_2_2(D, S) _FP_FRAC_COPY_2 (D, S)
+
+#endif /* !SOFT_FP_OP_2_H */
new file mode 100644
@@ -0,0 +1,875 @@
+/* Software floating-point emulation.
+ Basic four-word fraction declaration and manipulation.
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Richard Henderson (rth@cygnus.com),
+ Jakub Jelinek (jj@ultra.linux.cz),
+ David S. Miller (davem@redhat.com) and
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_OP_4_H
+#define SOFT_FP_OP_4_H 1
+
+#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4]
+#define _FP_FRAC_COPY_4(D, S) \
+ (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \
+ D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
+#define _FP_FRAC_SET_4(X, I) __FP_FRAC_SET_4 (X, I)
+#define _FP_FRAC_HIGH_4(X) (X##_f[3])
+#define _FP_FRAC_LOW_4(X) (X##_f[0])
+#define _FP_FRAC_WORD_4(X, w) (X##_f[w])
+
+#define _FP_FRAC_SLL_4(X, N) \
+ do \
+ { \
+ _FP_I_TYPE _FP_FRAC_SLL_4_up, _FP_FRAC_SLL_4_down; \
+ _FP_I_TYPE _FP_FRAC_SLL_4_skip, _FP_FRAC_SLL_4_i; \
+ _FP_FRAC_SLL_4_skip = (N) / _FP_W_TYPE_SIZE; \
+ _FP_FRAC_SLL_4_up = (N) % _FP_W_TYPE_SIZE; \
+ _FP_FRAC_SLL_4_down = _FP_W_TYPE_SIZE - _FP_FRAC_SLL_4_up; \
+ if (!_FP_FRAC_SLL_4_up) \
+ for (_FP_FRAC_SLL_4_i = 3; \
+ _FP_FRAC_SLL_4_i >= _FP_FRAC_SLL_4_skip; \
+ --_FP_FRAC_SLL_4_i) \
+ X##_f[_FP_FRAC_SLL_4_i] \
+ = X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip]; \
+ else \
+ { \
+ for (_FP_FRAC_SLL_4_i = 3; \
+ _FP_FRAC_SLL_4_i > _FP_FRAC_SLL_4_skip; \
+ --_FP_FRAC_SLL_4_i) \
+ X##_f[_FP_FRAC_SLL_4_i] \
+ = ((X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip] \
+ << _FP_FRAC_SLL_4_up) \
+ | (X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip-1] \
+ >> _FP_FRAC_SLL_4_down)); \
+ X##_f[_FP_FRAC_SLL_4_i--] = X##_f[0] << _FP_FRAC_SLL_4_up; \
+ } \
+ for (; _FP_FRAC_SLL_4_i >= 0; --_FP_FRAC_SLL_4_i) \
+ X##_f[_FP_FRAC_SLL_4_i] = 0; \
+ } \
+ while (0)
+
+/* This one was broken too. */
+#define _FP_FRAC_SRL_4(X, N) \
+ do \
+ { \
+ _FP_I_TYPE _FP_FRAC_SRL_4_up, _FP_FRAC_SRL_4_down; \
+ _FP_I_TYPE _FP_FRAC_SRL_4_skip, _FP_FRAC_SRL_4_i; \
+ _FP_FRAC_SRL_4_skip = (N) / _FP_W_TYPE_SIZE; \
+ _FP_FRAC_SRL_4_down = (N) % _FP_W_TYPE_SIZE; \
+ _FP_FRAC_SRL_4_up = _FP_W_TYPE_SIZE - _FP_FRAC_SRL_4_down; \
+ if (!_FP_FRAC_SRL_4_down) \
+ for (_FP_FRAC_SRL_4_i = 0; \
+ _FP_FRAC_SRL_4_i <= 3-_FP_FRAC_SRL_4_skip; \
+ ++_FP_FRAC_SRL_4_i) \
+ X##_f[_FP_FRAC_SRL_4_i] \
+ = X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip]; \
+ else \
+ { \
+ for (_FP_FRAC_SRL_4_i = 0; \
+ _FP_FRAC_SRL_4_i < 3-_FP_FRAC_SRL_4_skip; \
+ ++_FP_FRAC_SRL_4_i) \
+ X##_f[_FP_FRAC_SRL_4_i] \
+ = ((X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip] \
+ >> _FP_FRAC_SRL_4_down) \
+ | (X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip+1] \
+ << _FP_FRAC_SRL_4_up)); \
+ X##_f[_FP_FRAC_SRL_4_i++] = X##_f[3] >> _FP_FRAC_SRL_4_down; \
+ } \
+ for (; _FP_FRAC_SRL_4_i < 4; ++_FP_FRAC_SRL_4_i) \
+ X##_f[_FP_FRAC_SRL_4_i] = 0; \
+ } \
+ while (0)
+
+
+/* Right shift with sticky-lsb.
+ What this actually means is that we do a standard right-shift,
+ but that if any of the bits that fall off the right hand side
+ were one then we always set the LSbit. */
+#define _FP_FRAC_SRST_4(X, S, N, size) \
+ do \
+ { \
+ _FP_I_TYPE _FP_FRAC_SRST_4_up, _FP_FRAC_SRST_4_down; \
+ _FP_I_TYPE _FP_FRAC_SRST_4_skip, _FP_FRAC_SRST_4_i; \
+ _FP_W_TYPE _FP_FRAC_SRST_4_s; \
+ _FP_FRAC_SRST_4_skip = (N) / _FP_W_TYPE_SIZE; \
+ _FP_FRAC_SRST_4_down = (N) % _FP_W_TYPE_SIZE; \
+ _FP_FRAC_SRST_4_up = _FP_W_TYPE_SIZE - _FP_FRAC_SRST_4_down; \
+ for (_FP_FRAC_SRST_4_s = _FP_FRAC_SRST_4_i = 0; \
+ _FP_FRAC_SRST_4_i < _FP_FRAC_SRST_4_skip; \
+ ++_FP_FRAC_SRST_4_i) \
+ _FP_FRAC_SRST_4_s |= X##_f[_FP_FRAC_SRST_4_i]; \
+ if (!_FP_FRAC_SRST_4_down) \
+ for (_FP_FRAC_SRST_4_i = 0; \
+ _FP_FRAC_SRST_4_i <= 3-_FP_FRAC_SRST_4_skip; \
+ ++_FP_FRAC_SRST_4_i) \
+ X##_f[_FP_FRAC_SRST_4_i] \
+ = X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip]; \
+ else \
+ { \
+ _FP_FRAC_SRST_4_s \
+ |= X##_f[_FP_FRAC_SRST_4_i] << _FP_FRAC_SRST_4_up; \
+ for (_FP_FRAC_SRST_4_i = 0; \
+ _FP_FRAC_SRST_4_i < 3-_FP_FRAC_SRST_4_skip; \
+ ++_FP_FRAC_SRST_4_i) \
+ X##_f[_FP_FRAC_SRST_4_i] \
+ = ((X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip] \
+ >> _FP_FRAC_SRST_4_down) \
+ | (X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip+1] \
+ << _FP_FRAC_SRST_4_up)); \
+ X##_f[_FP_FRAC_SRST_4_i++] \
+ = X##_f[3] >> _FP_FRAC_SRST_4_down; \
+ } \
+ for (; _FP_FRAC_SRST_4_i < 4; ++_FP_FRAC_SRST_4_i) \
+ X##_f[_FP_FRAC_SRST_4_i] = 0; \
+ S = (_FP_FRAC_SRST_4_s != 0); \
+ } \
+ while (0)
+
+#define _FP_FRAC_SRS_4(X, N, size) \
+ do \
+ { \
+ int _FP_FRAC_SRS_4_sticky; \
+ _FP_FRAC_SRST_4 (X, _FP_FRAC_SRS_4_sticky, (N), (size)); \
+ X##_f[0] |= _FP_FRAC_SRS_4_sticky; \
+ } \
+ while (0)
+
+#define _FP_FRAC_ADD_4(R, X, Y) \
+ __FP_FRAC_ADD_4 (R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
+ X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
+ Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
+
+#define _FP_FRAC_SUB_4(R, X, Y) \
+ __FP_FRAC_SUB_4 (R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
+ X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
+ Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
+
+#define _FP_FRAC_DEC_4(X, Y) \
+ __FP_FRAC_DEC_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
+ Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
+
+#define _FP_FRAC_ADDI_4(X, I) \
+ __FP_FRAC_ADDI_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
+
+#define _FP_ZEROFRAC_4 0, 0, 0, 0
+#define _FP_MINFRAC_4 0, 0, 0, 1
+#define _FP_MAXFRAC_4 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0)
+
+#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
+#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE) X##_f[3] < 0)
+#define _FP_FRAC_OVERP_4(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs)
+#define _FP_FRAC_HIGHBIT_DW_4(fs, X) \
+ (_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs)
+#define _FP_FRAC_CLEAR_OVERP_4(fs, X) (_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs)
+
+#define _FP_FRAC_EQ_4(X, Y) \
+ (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \
+ && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
+
+#define _FP_FRAC_GT_4(X, Y) \
+ (X##_f[3] > Y##_f[3] \
+ || (X##_f[3] == Y##_f[3] \
+ && (X##_f[2] > Y##_f[2] \
+ || (X##_f[2] == Y##_f[2] \
+ && (X##_f[1] > Y##_f[1] \
+ || (X##_f[1] == Y##_f[1] \
+ && X##_f[0] > Y##_f[0]))))))
+
+#define _FP_FRAC_GE_4(X, Y) \
+ (X##_f[3] > Y##_f[3] \
+ || (X##_f[3] == Y##_f[3] \
+ && (X##_f[2] > Y##_f[2] \
+ || (X##_f[2] == Y##_f[2] \
+ && (X##_f[1] > Y##_f[1] \
+ || (X##_f[1] == Y##_f[1] \
+ && X##_f[0] >= Y##_f[0]))))))
+
+
+#define _FP_FRAC_CLZ_4(R, X) \
+ do \
+ { \
+ if (X##_f[3]) \
+ __FP_CLZ ((R), X##_f[3]); \
+ else if (X##_f[2]) \
+ { \
+ __FP_CLZ ((R), X##_f[2]); \
+ (R) += _FP_W_TYPE_SIZE; \
+ } \
+ else if (X##_f[1]) \
+ { \
+ __FP_CLZ ((R), X##_f[1]); \
+ (R) += _FP_W_TYPE_SIZE*2; \
+ } \
+ else \
+ { \
+ __FP_CLZ ((R), X##_f[0]); \
+ (R) += _FP_W_TYPE_SIZE*3; \
+ } \
+ } \
+ while (0)
+
+
+#define _FP_UNPACK_RAW_4(fs, X, val) \
+ do \
+ { \
+ union _FP_UNION_##fs _FP_UNPACK_RAW_4_flo; \
+ _FP_UNPACK_RAW_4_flo.flt = (val); \
+ X##_f[0] = _FP_UNPACK_RAW_4_flo.bits.frac0; \
+ X##_f[1] = _FP_UNPACK_RAW_4_flo.bits.frac1; \
+ X##_f[2] = _FP_UNPACK_RAW_4_flo.bits.frac2; \
+ X##_f[3] = _FP_UNPACK_RAW_4_flo.bits.frac3; \
+ X##_e = _FP_UNPACK_RAW_4_flo.bits.exp; \
+ X##_s = _FP_UNPACK_RAW_4_flo.bits.sign; \
+ } \
+ while (0)
+
+#define _FP_UNPACK_RAW_4_P(fs, X, val) \
+ do \
+ { \
+ union _FP_UNION_##fs *_FP_UNPACK_RAW_4_P_flo \
+ = (union _FP_UNION_##fs *) (val); \
+ \
+ X##_f[0] = _FP_UNPACK_RAW_4_P_flo->bits.frac0; \
+ X##_f[1] = _FP_UNPACK_RAW_4_P_flo->bits.frac1; \
+ X##_f[2] = _FP_UNPACK_RAW_4_P_flo->bits.frac2; \
+ X##_f[3] = _FP_UNPACK_RAW_4_P_flo->bits.frac3; \
+ X##_e = _FP_UNPACK_RAW_4_P_flo->bits.exp; \
+ X##_s = _FP_UNPACK_RAW_4_P_flo->bits.sign; \
+ } \
+ while (0)
+
+#define _FP_PACK_RAW_4(fs, val, X) \
+ do \
+ { \
+ union _FP_UNION_##fs _FP_PACK_RAW_4_flo; \
+ _FP_PACK_RAW_4_flo.bits.frac0 = X##_f[0]; \
+ _FP_PACK_RAW_4_flo.bits.frac1 = X##_f[1]; \
+ _FP_PACK_RAW_4_flo.bits.frac2 = X##_f[2]; \
+ _FP_PACK_RAW_4_flo.bits.frac3 = X##_f[3]; \
+ _FP_PACK_RAW_4_flo.bits.exp = X##_e; \
+ _FP_PACK_RAW_4_flo.bits.sign = X##_s; \
+ (val) = _FP_PACK_RAW_4_flo.flt; \
+ } \
+ while (0)
+
+#define _FP_PACK_RAW_4_P(fs, val, X) \
+ do \
+ { \
+ union _FP_UNION_##fs *_FP_PACK_RAW_4_P_flo \
+ = (union _FP_UNION_##fs *) (val); \
+ \
+ _FP_PACK_RAW_4_P_flo->bits.frac0 = X##_f[0]; \
+ _FP_PACK_RAW_4_P_flo->bits.frac1 = X##_f[1]; \
+ _FP_PACK_RAW_4_P_flo->bits.frac2 = X##_f[2]; \
+ _FP_PACK_RAW_4_P_flo->bits.frac3 = X##_f[3]; \
+ _FP_PACK_RAW_4_P_flo->bits.exp = X##_e; \
+ _FP_PACK_RAW_4_P_flo->bits.sign = X##_s; \
+ } \
+ while (0)
+
+/* Multiplication algorithms: */
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
+
+#define _FP_MUL_MEAT_DW_4_wide(wfracbits, R, X, Y, doit) \
+ do \
+ { \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_b); \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_c); \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_d); \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_e); \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_f); \
+ \
+ doit (_FP_FRAC_WORD_8 (R, 1), _FP_FRAC_WORD_8 (R, 0), \
+ X##_f[0], Y##_f[0]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
+ X##_f[0], Y##_f[1]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_c_f1, _FP_MUL_MEAT_DW_4_wide_c_f0, \
+ X##_f[1], Y##_f[0]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
+ X##_f[1], Y##_f[1]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
+ X##_f[0], Y##_f[2]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_f_f1, _FP_MUL_MEAT_DW_4_wide_f_f0, \
+ X##_f[2], Y##_f[0]); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
+ _FP_FRAC_WORD_8 (R, 1), 0, \
+ _FP_MUL_MEAT_DW_4_wide_b_f1, \
+ _FP_MUL_MEAT_DW_4_wide_b_f0, \
+ 0, 0, _FP_FRAC_WORD_8 (R, 1)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
+ _FP_FRAC_WORD_8 (R, 1), 0, \
+ _FP_MUL_MEAT_DW_4_wide_c_f1, \
+ _FP_MUL_MEAT_DW_4_wide_c_f0, \
+ _FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
+ _FP_FRAC_WORD_8 (R, 1)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
+ _FP_FRAC_WORD_8 (R, 2), 0, \
+ _FP_MUL_MEAT_DW_4_wide_d_f1, \
+ _FP_MUL_MEAT_DW_4_wide_d_f0, \
+ 0, _FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
+ _FP_FRAC_WORD_8 (R, 2), 0, \
+ _FP_MUL_MEAT_DW_4_wide_e_f1, \
+ _FP_MUL_MEAT_DW_4_wide_e_f0, \
+ _FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
+ _FP_FRAC_WORD_8 (R, 2)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
+ _FP_FRAC_WORD_8 (R, 2), 0, \
+ _FP_MUL_MEAT_DW_4_wide_f_f1, \
+ _FP_MUL_MEAT_DW_4_wide_f_f0, \
+ _FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
+ _FP_FRAC_WORD_8 (R, 2)); \
+ doit (_FP_MUL_MEAT_DW_4_wide_b_f1, \
+ _FP_MUL_MEAT_DW_4_wide_b_f0, X##_f[0], Y##_f[3]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_c_f1, \
+ _FP_MUL_MEAT_DW_4_wide_c_f0, X##_f[3], Y##_f[0]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
+ X##_f[1], Y##_f[2]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
+ X##_f[2], Y##_f[1]); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
+ _FP_FRAC_WORD_8 (R, 3), 0, \
+ _FP_MUL_MEAT_DW_4_wide_b_f1, \
+ _FP_MUL_MEAT_DW_4_wide_b_f0, \
+ 0, _FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
+ _FP_FRAC_WORD_8 (R, 3), 0, \
+ _FP_MUL_MEAT_DW_4_wide_c_f1, \
+ _FP_MUL_MEAT_DW_4_wide_c_f0, \
+ _FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
+ _FP_FRAC_WORD_8 (R, 3)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
+ _FP_FRAC_WORD_8 (R, 3), 0, \
+ _FP_MUL_MEAT_DW_4_wide_d_f1, \
+ _FP_MUL_MEAT_DW_4_wide_d_f0, \
+ _FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
+ _FP_FRAC_WORD_8 (R, 3)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
+ _FP_FRAC_WORD_8 (R, 3), 0, \
+ _FP_MUL_MEAT_DW_4_wide_e_f1, \
+ _FP_MUL_MEAT_DW_4_wide_e_f0, \
+ _FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
+ _FP_FRAC_WORD_8 (R, 3)); \
+ doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
+ X##_f[2], Y##_f[2]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_c_f1, _FP_MUL_MEAT_DW_4_wide_c_f0, \
+ X##_f[1], Y##_f[3]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
+ X##_f[3], Y##_f[1]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
+ X##_f[2], Y##_f[3]); \
+ doit (_FP_MUL_MEAT_DW_4_wide_f_f1, _FP_MUL_MEAT_DW_4_wide_f_f0, \
+ X##_f[3], Y##_f[2]); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
+ _FP_FRAC_WORD_8 (R, 4), 0, \
+ _FP_MUL_MEAT_DW_4_wide_b_f1, \
+ _FP_MUL_MEAT_DW_4_wide_b_f0, \
+ 0, _FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
+ _FP_FRAC_WORD_8 (R, 4), 0, \
+ _FP_MUL_MEAT_DW_4_wide_c_f1, \
+ _FP_MUL_MEAT_DW_4_wide_c_f0, \
+ _FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
+ _FP_FRAC_WORD_8 (R, 4)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
+ _FP_FRAC_WORD_8 (R, 4), 0, \
+ _FP_MUL_MEAT_DW_4_wide_d_f1, \
+ _FP_MUL_MEAT_DW_4_wide_d_f0, \
+ _FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
+ _FP_FRAC_WORD_8 (R, 4)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
+ _FP_FRAC_WORD_8 (R, 5), 0, \
+ _FP_MUL_MEAT_DW_4_wide_e_f1, \
+ _FP_MUL_MEAT_DW_4_wide_e_f0, \
+ 0, _FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5)); \
+ __FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
+ _FP_FRAC_WORD_8 (R, 5), 0, \
+ _FP_MUL_MEAT_DW_4_wide_f_f1, \
+ _FP_MUL_MEAT_DW_4_wide_f_f0, \
+ _FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
+ _FP_FRAC_WORD_8 (R, 5)); \
+ doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
+ X##_f[3], Y##_f[3]); \
+ __FP_FRAC_ADD_2 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
+ _FP_MUL_MEAT_DW_4_wide_b_f1, \
+ _FP_MUL_MEAT_DW_4_wide_b_f0, \
+ _FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6)); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \
+ do \
+ { \
+ _FP_FRAC_DECL_8 (_FP_MUL_MEAT_4_wide_z); \
+ \
+ _FP_MUL_MEAT_DW_4_wide ((wfracbits), _FP_MUL_MEAT_4_wide_z, \
+ X, Y, doit); \
+ \
+ /* Normalize since we know where the msb of the multiplicands \
+ were (bit B), we know that the msb of the of the product is \
+ at either 2B or 2B-1. */ \
+ _FP_FRAC_SRS_8 (_FP_MUL_MEAT_4_wide_z, (wfracbits)-1, \
+ 2*(wfracbits)); \
+ __FP_FRAC_SET_4 (R, _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 3), \
+ _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 2), \
+ _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 1), \
+ _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 0)); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_DW_4_gmp(wfracbits, R, X, Y) \
+ do \
+ { \
+ mpn_mul_n (R##_f, _x_f, _y_f, 4); \
+ } \
+ while (0)
+
+#define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \
+ do \
+ { \
+ _FP_FRAC_DECL_8 (_FP_MUL_MEAT_4_gmp_z); \
+ \
+ _FP_MUL_MEAT_DW_4_gmp ((wfracbits), _FP_MUL_MEAT_4_gmp_z, X, Y); \
+ \
+ /* Normalize since we know where the msb of the multiplicands \
+ were (bit B), we know that the msb of the of the product is \
+ at either 2B or 2B-1. */ \
+ _FP_FRAC_SRS_8 (_FP_MUL_MEAT_4_gmp_z, (wfracbits)-1, \
+ 2*(wfracbits)); \
+ __FP_FRAC_SET_4 (R, _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 3), \
+ _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 2), \
+ _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 1), \
+ _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 0)); \
+ } \
+ while (0)
+
+/* Helper utility for _FP_DIV_MEAT_4_udiv:
+ * pppp = m * nnn. */
+#define umul_ppppmnnn(p3, p2, p1, p0, m, n2, n1, n0) \
+ do \
+ { \
+ UWtype umul_ppppmnnn_t; \
+ umul_ppmm (p1, p0, m, n0); \
+ umul_ppmm (p2, umul_ppppmnnn_t, m, n1); \
+ __FP_FRAC_ADDI_2 (p2, p1, umul_ppppmnnn_t); \
+ umul_ppmm (p3, umul_ppppmnnn_t, m, n2); \
+ __FP_FRAC_ADDI_2 (p3, p2, umul_ppppmnnn_t); \
+ } \
+ while (0)
+
+/* Division algorithms: */
+
+#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \
+ do \
+ { \
+ int _FP_DIV_MEAT_4_udiv_i; \
+ _FP_FRAC_DECL_4 (_FP_DIV_MEAT_4_udiv_n); \
+ _FP_FRAC_DECL_4 (_FP_DIV_MEAT_4_udiv_m); \
+ _FP_FRAC_SET_4 (_FP_DIV_MEAT_4_udiv_n, _FP_ZEROFRAC_4); \
+ if (_FP_FRAC_GE_4 (X, Y)) \
+ { \
+ _FP_DIV_MEAT_4_udiv_n_f[3] \
+ = X##_f[0] << (_FP_W_TYPE_SIZE - 1); \
+ _FP_FRAC_SRL_4 (X, 1); \
+ } \
+ else \
+ R##_e--; \
+ \
+ /* Normalize, i.e. make the most significant bit of the \
+ denominator set. */ \
+ _FP_FRAC_SLL_4 (Y, _FP_WFRACXBITS_##fs); \
+ \
+ for (_FP_DIV_MEAT_4_udiv_i = 3; ; _FP_DIV_MEAT_4_udiv_i--) \
+ { \
+ if (X##_f[3] == Y##_f[3]) \
+ { \
+ /* This is a special case, not an optimization \
+ (X##_f[3]/Y##_f[3] would not fit into UWtype). \
+ As X## is guaranteed to be < Y, \
+ R##_f[_FP_DIV_MEAT_4_udiv_i] can be either \
+ (UWtype)-1 or (UWtype)-2. */ \
+ R##_f[_FP_DIV_MEAT_4_udiv_i] = -1; \
+ if (!_FP_DIV_MEAT_4_udiv_i) \
+ break; \
+ __FP_FRAC_SUB_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
+ Y##_f[2], Y##_f[1], Y##_f[0], 0, \
+ X##_f[2], X##_f[1], X##_f[0], \
+ _FP_DIV_MEAT_4_udiv_n_f[_FP_DIV_MEAT_4_udiv_i]); \
+ _FP_FRAC_SUB_4 (X, Y, X); \
+ if (X##_f[3] > Y##_f[3]) \
+ { \
+ R##_f[_FP_DIV_MEAT_4_udiv_i] = -2; \
+ _FP_FRAC_ADD_4 (X, Y, X); \
+ } \
+ } \
+ else \
+ { \
+ udiv_qrnnd (R##_f[_FP_DIV_MEAT_4_udiv_i], \
+ X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \
+ umul_ppppmnnn (_FP_DIV_MEAT_4_udiv_m_f[3], \
+ _FP_DIV_MEAT_4_udiv_m_f[2], \
+ _FP_DIV_MEAT_4_udiv_m_f[1], \
+ _FP_DIV_MEAT_4_udiv_m_f[0], \
+ R##_f[_FP_DIV_MEAT_4_udiv_i], \
+ Y##_f[2], Y##_f[1], Y##_f[0]); \
+ X##_f[2] = X##_f[1]; \
+ X##_f[1] = X##_f[0]; \
+ X##_f[0] \
+ = _FP_DIV_MEAT_4_udiv_n_f[_FP_DIV_MEAT_4_udiv_i]; \
+ if (_FP_FRAC_GT_4 (_FP_DIV_MEAT_4_udiv_m, X)) \
+ { \
+ R##_f[_FP_DIV_MEAT_4_udiv_i]--; \
+ _FP_FRAC_ADD_4 (X, Y, X); \
+ if (_FP_FRAC_GE_4 (X, Y) \
+ && _FP_FRAC_GT_4 (_FP_DIV_MEAT_4_udiv_m, X)) \
+ { \
+ R##_f[_FP_DIV_MEAT_4_udiv_i]--; \
+ _FP_FRAC_ADD_4 (X, Y, X); \
+ } \
+ } \
+ _FP_FRAC_DEC_4 (X, _FP_DIV_MEAT_4_udiv_m); \
+ if (!_FP_DIV_MEAT_4_udiv_i) \
+ { \
+ if (!_FP_FRAC_EQ_4 (X, _FP_DIV_MEAT_4_udiv_m)) \
+ R##_f[0] |= _FP_WORK_STICKY; \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ while (0)
+
+
+/* Square root algorithms:
+ We have just one right now, maybe Newton approximation
+ should be added for those machines where division is fast. */
+
+#define _FP_SQRT_MEAT_4(R, S, T, X, q) \
+ do \
+ { \
+ while (q) \
+ { \
+ T##_f[3] = S##_f[3] + (q); \
+ if (T##_f[3] <= X##_f[3]) \
+ { \
+ S##_f[3] = T##_f[3] + (q); \
+ X##_f[3] -= T##_f[3]; \
+ R##_f[3] += (q); \
+ } \
+ _FP_FRAC_SLL_4 (X, 1); \
+ (q) >>= 1; \
+ } \
+ (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
+ while (q) \
+ { \
+ T##_f[2] = S##_f[2] + (q); \
+ T##_f[3] = S##_f[3]; \
+ if (T##_f[3] < X##_f[3] \
+ || (T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \
+ { \
+ S##_f[2] = T##_f[2] + (q); \
+ S##_f[3] += (T##_f[2] > S##_f[2]); \
+ __FP_FRAC_DEC_2 (X##_f[3], X##_f[2], \
+ T##_f[3], T##_f[2]); \
+ R##_f[2] += (q); \
+ } \
+ _FP_FRAC_SLL_4 (X, 1); \
+ (q) >>= 1; \
+ } \
+ (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
+ while (q) \
+ { \
+ T##_f[1] = S##_f[1] + (q); \
+ T##_f[2] = S##_f[2]; \
+ T##_f[3] = S##_f[3]; \
+ if (T##_f[3] < X##_f[3] \
+ || (T##_f[3] == X##_f[3] \
+ && (T##_f[2] < X##_f[2] \
+ || (T##_f[2] == X##_f[2] \
+ && T##_f[1] <= X##_f[1])))) \
+ { \
+ S##_f[1] = T##_f[1] + (q); \
+ S##_f[2] += (T##_f[1] > S##_f[1]); \
+ S##_f[3] += (T##_f[2] > S##_f[2]); \
+ __FP_FRAC_DEC_3 (X##_f[3], X##_f[2], X##_f[1], \
+ T##_f[3], T##_f[2], T##_f[1]); \
+ R##_f[1] += (q); \
+ } \
+ _FP_FRAC_SLL_4 (X, 1); \
+ (q) >>= 1; \
+ } \
+ (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
+ while ((q) != _FP_WORK_ROUND) \
+ { \
+ T##_f[0] = S##_f[0] + (q); \
+ T##_f[1] = S##_f[1]; \
+ T##_f[2] = S##_f[2]; \
+ T##_f[3] = S##_f[3]; \
+ if (_FP_FRAC_GE_4 (X, T)) \
+ { \
+ S##_f[0] = T##_f[0] + (q); \
+ S##_f[1] += (T##_f[0] > S##_f[0]); \
+ S##_f[2] += (T##_f[1] > S##_f[1]); \
+ S##_f[3] += (T##_f[2] > S##_f[2]); \
+ _FP_FRAC_DEC_4 (X, T); \
+ R##_f[0] += (q); \
+ } \
+ _FP_FRAC_SLL_4 (X, 1); \
+ (q) >>= 1; \
+ } \
+ if (!_FP_FRAC_ZEROP_4 (X)) \
+ { \
+ if (_FP_FRAC_GT_4 (X, S)) \
+ R##_f[0] |= _FP_WORK_ROUND; \
+ R##_f[0] |= _FP_WORK_STICKY; \
+ } \
+ } \
+ while (0)
+
+
+/* Internals. */
+
+#define __FP_FRAC_SET_4(X, I3, I2, I1, I0) \
+ (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
+
+#ifndef __FP_FRAC_ADD_3
+# define __FP_FRAC_ADD_3(r2, r1, r0, x2, x1, x0, y2, y1, y0) \
+ do \
+ { \
+ _FP_W_TYPE __FP_FRAC_ADD_3_c1, __FP_FRAC_ADD_3_c2; \
+ r0 = x0 + y0; \
+ __FP_FRAC_ADD_3_c1 = r0 < x0; \
+ r1 = x1 + y1; \
+ __FP_FRAC_ADD_3_c2 = r1 < x1; \
+ r1 += __FP_FRAC_ADD_3_c1; \
+ __FP_FRAC_ADD_3_c2 |= r1 < __FP_FRAC_ADD_3_c1; \
+ r2 = x2 + y2 + __FP_FRAC_ADD_3_c2; \
+ } \
+ while (0)
+#endif
+
+#ifndef __FP_FRAC_ADD_4
+# define __FP_FRAC_ADD_4(r3, r2, r1, r0, x3, x2, x1, x0, y3, y2, y1, y0) \
+ do \
+ { \
+ _FP_W_TYPE __FP_FRAC_ADD_4_c1, __FP_FRAC_ADD_4_c2; \
+ _FP_W_TYPE __FP_FRAC_ADD_4_c3; \
+ r0 = x0 + y0; \
+ __FP_FRAC_ADD_4_c1 = r0 < x0; \
+ r1 = x1 + y1; \
+ __FP_FRAC_ADD_4_c2 = r1 < x1; \
+ r1 += __FP_FRAC_ADD_4_c1; \
+ __FP_FRAC_ADD_4_c2 |= r1 < __FP_FRAC_ADD_4_c1; \
+ r2 = x2 + y2; \
+ __FP_FRAC_ADD_4_c3 = r2 < x2; \
+ r2 += __FP_FRAC_ADD_4_c2; \
+ __FP_FRAC_ADD_4_c3 |= r2 < __FP_FRAC_ADD_4_c2; \
+ r3 = x3 + y3 + __FP_FRAC_ADD_4_c3; \
+ } \
+ while (0)
+#endif
+
+#ifndef __FP_FRAC_SUB_3
+# define __FP_FRAC_SUB_3(r2, r1, r0, x2, x1, x0, y2, y1, y0) \
+ do \
+ { \
+ _FP_W_TYPE __FP_FRAC_SUB_3_c1, __FP_FRAC_SUB_3_c2; \
+ r0 = x0 - y0; \
+ __FP_FRAC_SUB_3_c1 = r0 > x0; \
+ r1 = x1 - y1; \
+ __FP_FRAC_SUB_3_c2 = r1 > x1; \
+ r1 -= __FP_FRAC_SUB_3_c1; \
+ __FP_FRAC_SUB_3_c2 |= __FP_FRAC_SUB_3_c1 && (y1 == x1); \
+ r2 = x2 - y2 - __FP_FRAC_SUB_3_c2; \
+ } \
+ while (0)
+#endif
+
+#ifndef __FP_FRAC_SUB_4
+# define __FP_FRAC_SUB_4(r3, r2, r1, r0, x3, x2, x1, x0, y3, y2, y1, y0) \
+ do \
+ { \
+ _FP_W_TYPE __FP_FRAC_SUB_4_c1, __FP_FRAC_SUB_4_c2; \
+ _FP_W_TYPE __FP_FRAC_SUB_4_c3; \
+ r0 = x0 - y0; \
+ __FP_FRAC_SUB_4_c1 = r0 > x0; \
+ r1 = x1 - y1; \
+ __FP_FRAC_SUB_4_c2 = r1 > x1; \
+ r1 -= __FP_FRAC_SUB_4_c1; \
+ __FP_FRAC_SUB_4_c2 |= __FP_FRAC_SUB_4_c1 && (y1 == x1); \
+ r2 = x2 - y2; \
+ __FP_FRAC_SUB_4_c3 = r2 > x2; \
+ r2 -= __FP_FRAC_SUB_4_c2; \
+ __FP_FRAC_SUB_4_c3 |= __FP_FRAC_SUB_4_c2 && (y2 == x2); \
+ r3 = x3 - y3 - __FP_FRAC_SUB_4_c3; \
+ } \
+ while (0)
+#endif
+
+#ifndef __FP_FRAC_DEC_3
+# define __FP_FRAC_DEC_3(x2, x1, x0, y2, y1, y0) \
+ do \
+ { \
+ UWtype __FP_FRAC_DEC_3_t0, __FP_FRAC_DEC_3_t1; \
+ UWtype __FP_FRAC_DEC_3_t2; \
+ __FP_FRAC_DEC_3_t0 = x0; \
+ __FP_FRAC_DEC_3_t1 = x1; \
+ __FP_FRAC_DEC_3_t2 = x2; \
+ __FP_FRAC_SUB_3 (x2, x1, x0, __FP_FRAC_DEC_3_t2, \
+ __FP_FRAC_DEC_3_t1, __FP_FRAC_DEC_3_t0, \
+ y2, y1, y0); \
+ } \
+ while (0)
+#endif
+
+#ifndef __FP_FRAC_DEC_4
+# define __FP_FRAC_DEC_4(x3, x2, x1, x0, y3, y2, y1, y0) \
+ do \
+ { \
+ UWtype __FP_FRAC_DEC_4_t0, __FP_FRAC_DEC_4_t1; \
+ UWtype __FP_FRAC_DEC_4_t2, __FP_FRAC_DEC_4_t3; \
+ __FP_FRAC_DEC_4_t0 = x0; \
+ __FP_FRAC_DEC_4_t1 = x1; \
+ __FP_FRAC_DEC_4_t2 = x2; \
+ __FP_FRAC_DEC_4_t3 = x3; \
+ __FP_FRAC_SUB_4 (x3, x2, x1, x0, __FP_FRAC_DEC_4_t3, \
+ __FP_FRAC_DEC_4_t2, __FP_FRAC_DEC_4_t1, \
+ __FP_FRAC_DEC_4_t0, y3, y2, y1, y0); \
+ } \
+ while (0)
+#endif
+
+#ifndef __FP_FRAC_ADDI_4
+# define __FP_FRAC_ADDI_4(x3, x2, x1, x0, i) \
+ do \
+ { \
+ UWtype __FP_FRAC_ADDI_4_t; \
+ __FP_FRAC_ADDI_4_t = ((x0 += i) < i); \
+ x1 += __FP_FRAC_ADDI_4_t; \
+ __FP_FRAC_ADDI_4_t = (x1 < __FP_FRAC_ADDI_4_t); \
+ x2 += __FP_FRAC_ADDI_4_t; \
+ __FP_FRAC_ADDI_4_t = (x2 < __FP_FRAC_ADDI_4_t); \
+ x3 += __FP_FRAC_ADDI_4_t; \
+ } \
+ while (0)
+#endif
+
+/* Convert FP values between word sizes. This appears to be more
+ complicated than I'd have expected it to be, so these might be
+ wrong... These macros are in any case somewhat bogus because they
+ use information about what various FRAC_n variables look like
+ internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
+ the ones in op-2.h and op-1.h. */
+#define _FP_FRAC_COPY_1_4(D, S) (D##_f = S##_f[0])
+
+#define _FP_FRAC_COPY_2_4(D, S) \
+ do \
+ { \
+ D##_f0 = S##_f[0]; \
+ D##_f1 = S##_f[1]; \
+ } \
+ while (0)
+
+/* Assembly/disassembly for converting to/from integral types.
+ No shifting or overflow handled here. */
+/* Put the FP value X into r, which is an integer of size rsize. */
+#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \
+ do \
+ { \
+ if ((rsize) <= _FP_W_TYPE_SIZE) \
+ (r) = X##_f[0]; \
+ else if ((rsize) <= 2*_FP_W_TYPE_SIZE) \
+ { \
+ (r) = X##_f[1]; \
+ (r) = ((rsize) <= _FP_W_TYPE_SIZE \
+ ? 0 \
+ : (r) << _FP_W_TYPE_SIZE); \
+ (r) += X##_f[0]; \
+ } \
+ else \
+ { \
+ /* I'm feeling lazy so we deal with int == 3words \
+ (implausible) and int == 4words as a single case. */ \
+ (r) = X##_f[3]; \
+ (r) = ((rsize) <= _FP_W_TYPE_SIZE \
+ ? 0 \
+ : (r) << _FP_W_TYPE_SIZE); \
+ (r) += X##_f[2]; \
+ (r) = ((rsize) <= _FP_W_TYPE_SIZE \
+ ? 0 \
+ : (r) << _FP_W_TYPE_SIZE); \
+ (r) += X##_f[1]; \
+ (r) = ((rsize) <= _FP_W_TYPE_SIZE \
+ ? 0 \
+ : (r) << _FP_W_TYPE_SIZE); \
+ (r) += X##_f[0]; \
+ } \
+ } \
+ while (0)
+
+/* "No disassemble Number Five!" */
+/* Move an integer of size rsize into X's fractional part. We rely on
+ the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
+ having to mask the values we store into it. */
+#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \
+ do \
+ { \
+ X##_f[0] = (r); \
+ X##_f[1] = ((rsize) <= _FP_W_TYPE_SIZE \
+ ? 0 \
+ : (r) >> _FP_W_TYPE_SIZE); \
+ X##_f[2] = ((rsize) <= 2*_FP_W_TYPE_SIZE \
+ ? 0 \
+ : (r) >> 2*_FP_W_TYPE_SIZE); \
+ X##_f[3] = ((rsize) <= 3*_FP_W_TYPE_SIZE \
+ ? 0 \
+ : (r) >> 3*_FP_W_TYPE_SIZE); \
+ } \
+ while (0)
+
+#define _FP_FRAC_COPY_4_1(D, S) \
+ do \
+ { \
+ D##_f[0] = S##_f; \
+ D##_f[1] = D##_f[2] = D##_f[3] = 0; \
+ } \
+ while (0)
+
+#define _FP_FRAC_COPY_4_2(D, S) \
+ do \
+ { \
+ D##_f[0] = S##_f0; \
+ D##_f[1] = S##_f1; \
+ D##_f[2] = D##_f[3] = 0; \
+ } \
+ while (0)
+
+#define _FP_FRAC_COPY_4_4(D, S) _FP_FRAC_COPY_4 (D, S)
+
+#endif /* !SOFT_FP_OP_4_H */
new file mode 100644
@@ -0,0 +1 @@
+/* Stubbed out because we don't use it in QEMU. */
new file mode 100644
@@ -0,0 +1,2134 @@
+/* Software floating-point emulation. Common operations.
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Richard Henderson (rth@cygnus.com),
+ Jakub Jelinek (jj@ultra.linux.cz),
+ David S. Miller (davem@redhat.com) and
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_OP_COMMON_H
+#define SOFT_FP_OP_COMMON_H 1
+
+#define _FP_DECL(wc, X) \
+ _FP_I_TYPE X##_c __attribute__ ((unused)) _FP_ZERO_INIT; \
+ _FP_I_TYPE X##_s __attribute__ ((unused)) _FP_ZERO_INIT; \
+ _FP_I_TYPE X##_e __attribute__ ((unused)) _FP_ZERO_INIT; \
+ _FP_FRAC_DECL_##wc (X)
+
+/* Test whether the qNaN bit denotes a signaling NaN. */
+#define _FP_FRAC_SNANP(fs, X) \
+ ((_FP_QNANNEGATEDP) \
+ ? (_FP_FRAC_HIGH_RAW_##fs (X) & _FP_QNANBIT_##fs) \
+ : !(_FP_FRAC_HIGH_RAW_##fs (X) & _FP_QNANBIT_##fs))
+#define _FP_FRAC_SNANP_SEMIRAW(fs, X) \
+ ((_FP_QNANNEGATEDP) \
+ ? (_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs) \
+ : !(_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs))
+
+/* Finish truly unpacking a native fp value by classifying the kind
+ of fp value and normalizing both the exponent and the fraction. */
+
+#define _FP_UNPACK_CANONICAL(fs, wc, X) \
+ do \
+ { \
+ switch (X##_e) \
+ { \
+ default: \
+ _FP_FRAC_HIGH_RAW_##fs (X) |= _FP_IMPLBIT_##fs; \
+ _FP_FRAC_SLL_##wc (X, _FP_WORKBITS); \
+ X##_e -= _FP_EXPBIAS_##fs; \
+ X##_c = FP_CLS_NORMAL; \
+ break; \
+ \
+ case 0: \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ X##_c = FP_CLS_ZERO; \
+ else if (FP_DENORM_ZERO) \
+ { \
+ X##_c = FP_CLS_ZERO; \
+ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ } \
+ else \
+ { \
+ /* A denormalized number. */ \
+ _FP_I_TYPE _FP_UNPACK_CANONICAL_shift; \
+ _FP_FRAC_CLZ_##wc (_FP_UNPACK_CANONICAL_shift, \
+ X); \
+ _FP_UNPACK_CANONICAL_shift -= _FP_FRACXBITS_##fs; \
+ _FP_FRAC_SLL_##wc (X, (_FP_UNPACK_CANONICAL_shift \
+ + _FP_WORKBITS)); \
+ X##_e -= (_FP_EXPBIAS_##fs - 1 \
+ + _FP_UNPACK_CANONICAL_shift); \
+ X##_c = FP_CLS_NORMAL; \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ } \
+ break; \
+ \
+ case _FP_EXPMAX_##fs: \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ X##_c = FP_CLS_INF; \
+ else \
+ { \
+ X##_c = FP_CLS_NAN; \
+ /* Check for signaling NaN. */ \
+ if (_FP_FRAC_SNANP (fs, X)) \
+ FP_SET_EXCEPTION (FP_EX_INVALID \
+ | FP_EX_INVALID_SNAN); \
+ } \
+ break; \
+ } \
+ } \
+ while (0)
+
+/* Finish unpacking an fp value in semi-raw mode: the mantissa is
+ shifted by _FP_WORKBITS but the implicit MSB is not inserted and
+ other classification is not done. */
+#define _FP_UNPACK_SEMIRAW(fs, wc, X) _FP_FRAC_SLL_##wc (X, _FP_WORKBITS)
+
+/* Check whether a raw or semi-raw input value should be flushed to
+ zero, and flush it to zero if so. */
+#define _FP_CHECK_FLUSH_ZERO(fs, wc, X) \
+ do \
+ { \
+ if (FP_DENORM_ZERO \
+ && X##_e == 0 \
+ && !_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ } \
+ } \
+ while (0)
+
+/* A semi-raw value has overflowed to infinity. Adjust the mantissa
+ and exponent appropriately. */
+#define _FP_OVERFLOW_SEMIRAW(fs, wc, X) \
+ do \
+ { \
+ if (FP_ROUNDMODE == FP_RND_NEAREST \
+ || (FP_ROUNDMODE == FP_RND_PINF && !X##_s) \
+ || (FP_ROUNDMODE == FP_RND_MINF && X##_s)) \
+ { \
+ X##_e = _FP_EXPMAX_##fs; \
+ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
+ } \
+ else \
+ { \
+ X##_e = _FP_EXPMAX_##fs - 1; \
+ _FP_FRAC_SET_##wc (X, _FP_MAXFRAC_##wc); \
+ } \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ FP_SET_EXCEPTION (FP_EX_OVERFLOW); \
+ } \
+ while (0)
+
+/* Check for a semi-raw value being a signaling NaN and raise the
+ invalid exception if so. */
+#define _FP_CHECK_SIGNAN_SEMIRAW(fs, wc, X) \
+ do \
+ { \
+ if (X##_e == _FP_EXPMAX_##fs \
+ && !_FP_FRAC_ZEROP_##wc (X) \
+ && _FP_FRAC_SNANP_SEMIRAW (fs, X)) \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_SNAN); \
+ } \
+ while (0)
+
+/* Choose a NaN result from an operation on two semi-raw NaN
+ values. */
+#define _FP_CHOOSENAN_SEMIRAW(fs, wc, R, X, Y, OP) \
+ do \
+ { \
+ /* _FP_CHOOSENAN expects raw values, so shift as required. */ \
+ _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
+ _FP_FRAC_SRL_##wc (Y, _FP_WORKBITS); \
+ _FP_CHOOSENAN (fs, wc, R, X, Y, OP); \
+ _FP_FRAC_SLL_##wc (R, _FP_WORKBITS); \
+ } \
+ while (0)
+
+/* Make the fractional part a quiet NaN, preserving the payload
+ if possible, otherwise make it the canonical quiet NaN and set
+ the sign bit accordingly. */
+#define _FP_SETQNAN(fs, wc, X) \
+ do \
+ { \
+ if (_FP_QNANNEGATEDP) \
+ { \
+ _FP_FRAC_HIGH_RAW_##fs (X) &= _FP_QNANBIT_##fs - 1; \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ X##_s = _FP_NANSIGN_##fs; \
+ _FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
+ } \
+ } \
+ else \
+ _FP_FRAC_HIGH_RAW_##fs (X) |= _FP_QNANBIT_##fs; \
+ } \
+ while (0)
+#define _FP_SETQNAN_SEMIRAW(fs, wc, X) \
+ do \
+ { \
+ if (_FP_QNANNEGATEDP) \
+ { \
+ _FP_FRAC_HIGH_##fs (X) &= _FP_QNANBIT_SH_##fs - 1; \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ X##_s = _FP_NANSIGN_##fs; \
+ _FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
+ _FP_FRAC_SLL_##wc (X, _FP_WORKBITS); \
+ } \
+ } \
+ else \
+ _FP_FRAC_HIGH_##fs (X) |= _FP_QNANBIT_SH_##fs; \
+ } \
+ while (0)
+
+/* Test whether a biased exponent is normal (not zero or maximum). */
+#define _FP_EXP_NORMAL(fs, wc, X) (((X##_e + 1) & _FP_EXPMAX_##fs) > 1)
+
+/* Prepare to pack an fp value in semi-raw mode: the mantissa is
+ rounded and shifted right, with the rounding possibly increasing
+ the exponent (including changing a finite value to infinity). */
+#define _FP_PACK_SEMIRAW(fs, wc, X) \
+ do \
+ { \
+ int _FP_PACK_SEMIRAW_is_tiny \
+ = X##_e == 0 && !_FP_FRAC_ZEROP_##wc (X); \
+ if (_FP_TININESS_AFTER_ROUNDING \
+ && _FP_PACK_SEMIRAW_is_tiny) \
+ { \
+ FP_DECL_##fs (_FP_PACK_SEMIRAW_T); \
+ _FP_FRAC_COPY_##wc (_FP_PACK_SEMIRAW_T, X); \
+ _FP_PACK_SEMIRAW_T##_s = X##_s; \
+ _FP_PACK_SEMIRAW_T##_e = X##_e; \
+ _FP_FRAC_SLL_##wc (_FP_PACK_SEMIRAW_T, 1); \
+ _FP_ROUND (wc, _FP_PACK_SEMIRAW_T); \
+ if (_FP_FRAC_OVERP_##wc (fs, _FP_PACK_SEMIRAW_T)) \
+ _FP_PACK_SEMIRAW_is_tiny = 0; \
+ } \
+ _FP_ROUND (wc, X); \
+ if (_FP_PACK_SEMIRAW_is_tiny) \
+ { \
+ if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) \
+ || (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
+ FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
+ } \
+ if (_FP_FRAC_HIGH_##fs (X) \
+ & (_FP_OVERFLOW_##fs >> 1)) \
+ { \
+ _FP_FRAC_HIGH_##fs (X) &= ~(_FP_OVERFLOW_##fs >> 1); \
+ X##_e++; \
+ if (X##_e == _FP_EXPMAX_##fs) \
+ _FP_OVERFLOW_SEMIRAW (fs, wc, X); \
+ } \
+ _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
+ if (X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ if (!_FP_KEEPNANFRACP) \
+ { \
+ _FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
+ X##_s = _FP_NANSIGN_##fs; \
+ } \
+ else \
+ _FP_SETQNAN (fs, wc, X); \
+ } \
+ } \
+ while (0)
+
+/* Before packing the bits back into the native fp result, take care
+ of such mundane things as rounding and overflow. Also, for some
+ kinds of fp values, the original parts may not have been fully
+ extracted -- but that is ok, we can regenerate them now. */
+
+#define _FP_PACK_CANONICAL(fs, wc, X) \
+ do \
+ { \
+ switch (X##_c) \
+ { \
+ case FP_CLS_NORMAL: \
+ X##_e += _FP_EXPBIAS_##fs; \
+ if (X##_e > 0) \
+ { \
+ _FP_ROUND (wc, X); \
+ if (_FP_FRAC_OVERP_##wc (fs, X)) \
+ { \
+ _FP_FRAC_CLEAR_OVERP_##wc (fs, X); \
+ X##_e++; \
+ } \
+ _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
+ if (X##_e >= _FP_EXPMAX_##fs) \
+ { \
+ /* Overflow. */ \
+ switch (FP_ROUNDMODE) \
+ { \
+ case FP_RND_NEAREST: \
+ X##_c = FP_CLS_INF; \
+ break; \
+ case FP_RND_PINF: \
+ if (!X##_s) \
+ X##_c = FP_CLS_INF; \
+ break; \
+ case FP_RND_MINF: \
+ if (X##_s) \
+ X##_c = FP_CLS_INF; \
+ break; \
+ } \
+ if (X##_c == FP_CLS_INF) \
+ { \
+ /* Overflow to infinity. */ \
+ X##_e = _FP_EXPMAX_##fs; \
+ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
+ } \
+ else \
+ { \
+ /* Overflow to maximum normal. */ \
+ X##_e = _FP_EXPMAX_##fs - 1; \
+ _FP_FRAC_SET_##wc (X, _FP_MAXFRAC_##wc); \
+ } \
+ FP_SET_EXCEPTION (FP_EX_OVERFLOW); \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ } \
+ } \
+ else \
+ { \
+ /* We've got a denormalized number. */ \
+ int _FP_PACK_CANONICAL_is_tiny = 1; \
+ if (_FP_TININESS_AFTER_ROUNDING && X##_e == 0) \
+ { \
+ FP_DECL_##fs (_FP_PACK_CANONICAL_T); \
+ _FP_FRAC_COPY_##wc (_FP_PACK_CANONICAL_T, X); \
+ _FP_PACK_CANONICAL_T##_s = X##_s; \
+ _FP_PACK_CANONICAL_T##_e = X##_e; \
+ _FP_ROUND (wc, _FP_PACK_CANONICAL_T); \
+ if (_FP_FRAC_OVERP_##wc (fs, _FP_PACK_CANONICAL_T)) \
+ _FP_PACK_CANONICAL_is_tiny = 0; \
+ } \
+ X##_e = -X##_e + 1; \
+ if (X##_e <= _FP_WFRACBITS_##fs) \
+ { \
+ _FP_FRAC_SRS_##wc (X, X##_e, _FP_WFRACBITS_##fs); \
+ _FP_ROUND (wc, X); \
+ if (_FP_FRAC_HIGH_##fs (X) \
+ & (_FP_OVERFLOW_##fs >> 1)) \
+ { \
+ X##_e = 1; \
+ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ } \
+ else \
+ { \
+ X##_e = 0; \
+ _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
+ } \
+ if (_FP_PACK_CANONICAL_is_tiny \
+ && ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) \
+ || (FP_TRAPPING_EXCEPTIONS \
+ & FP_EX_UNDERFLOW))) \
+ FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
+ } \
+ else \
+ { \
+ /* Underflow to zero. */ \
+ X##_e = 0; \
+ if (!_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ _FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
+ _FP_ROUND (wc, X); \
+ _FP_FRAC_LOW_##wc (X) >>= (_FP_WORKBITS); \
+ } \
+ FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
+ } \
+ } \
+ break; \
+ \
+ case FP_CLS_ZERO: \
+ X##_e = 0; \
+ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
+ break; \
+ \
+ case FP_CLS_INF: \
+ X##_e = _FP_EXPMAX_##fs; \
+ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
+ break; \
+ \
+ case FP_CLS_NAN: \
+ X##_e = _FP_EXPMAX_##fs; \
+ if (!_FP_KEEPNANFRACP) \
+ { \
+ _FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
+ X##_s = _FP_NANSIGN_##fs; \
+ } \
+ else \
+ _FP_SETQNAN (fs, wc, X); \
+ break; \
+ } \
+ } \
+ while (0)
+
+/* This one accepts raw argument and not cooked, returns
+ 1 if X is a signaling NaN. */
+#define _FP_ISSIGNAN(fs, wc, X) \
+ ({ \
+ int _FP_ISSIGNAN_ret = 0; \
+ if (X##_e == _FP_EXPMAX_##fs) \
+ { \
+ if (!_FP_FRAC_ZEROP_##wc (X) \
+ && _FP_FRAC_SNANP (fs, X)) \
+ _FP_ISSIGNAN_ret = 1; \
+ } \
+ _FP_ISSIGNAN_ret; \
+ })
+
+
+
+
+
+/* Addition on semi-raw values. */
+#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
+ do \
+ { \
+ _FP_CHECK_FLUSH_ZERO (fs, wc, X); \
+ _FP_CHECK_FLUSH_ZERO (fs, wc, Y); \
+ if (X##_s == Y##_s) \
+ { \
+ /* Addition. */ \
+ __label__ add1, add2, add3, add_done; \
+ R##_s = X##_s; \
+ int _FP_ADD_INTERNAL_ediff = X##_e - Y##_e; \
+ if (_FP_ADD_INTERNAL_ediff > 0) \
+ { \
+ R##_e = X##_e; \
+ if (Y##_e == 0) \
+ { \
+ /* Y is zero or denormalized. */ \
+ if (_FP_FRAC_ZEROP_##wc (Y)) \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
+ _FP_FRAC_COPY_##wc (R, X); \
+ goto add_done; \
+ } \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_ADD_INTERNAL_ediff--; \
+ if (_FP_ADD_INTERNAL_ediff == 0) \
+ { \
+ _FP_FRAC_ADD_##wc (R, X, Y); \
+ goto add3; \
+ } \
+ if (X##_e == _FP_EXPMAX_##fs) \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
+ _FP_FRAC_COPY_##wc (R, X); \
+ goto add_done; \
+ } \
+ goto add1; \
+ } \
+ } \
+ else if (X##_e == _FP_EXPMAX_##fs) \
+ { \
+ /* X is NaN or Inf, Y is normal. */ \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
+ _FP_FRAC_COPY_##wc (R, X); \
+ goto add_done; \
+ } \
+ \
+ /* Insert implicit MSB of Y. */ \
+ _FP_FRAC_HIGH_##fs (Y) |= _FP_IMPLBIT_SH_##fs; \
+ \
+ add1: \
+ /* Shift the mantissa of Y to the right \
+ _FP_ADD_INTERNAL_EDIFF steps; remember to account \
+ later for the implicit MSB of X. */ \
+ if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
+ _FP_FRAC_SRS_##wc (Y, _FP_ADD_INTERNAL_ediff, \
+ _FP_WFRACBITS_##fs); \
+ else if (!_FP_FRAC_ZEROP_##wc (Y)) \
+ _FP_FRAC_SET_##wc (Y, _FP_MINFRAC_##wc); \
+ _FP_FRAC_ADD_##wc (R, X, Y); \
+ } \
+ else if (_FP_ADD_INTERNAL_ediff < 0) \
+ { \
+ _FP_ADD_INTERNAL_ediff = -_FP_ADD_INTERNAL_ediff; \
+ R##_e = Y##_e; \
+ if (X##_e == 0) \
+ { \
+ /* X is zero or denormalized. */ \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ goto add_done; \
+ } \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_ADD_INTERNAL_ediff--; \
+ if (_FP_ADD_INTERNAL_ediff == 0) \
+ { \
+ _FP_FRAC_ADD_##wc (R, Y, X); \
+ goto add3; \
+ } \
+ if (Y##_e == _FP_EXPMAX_##fs) \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ goto add_done; \
+ } \
+ goto add2; \
+ } \
+ } \
+ else if (Y##_e == _FP_EXPMAX_##fs) \
+ { \
+ /* Y is NaN or Inf, X is normal. */ \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ goto add_done; \
+ } \
+ \
+ /* Insert implicit MSB of X. */ \
+ _FP_FRAC_HIGH_##fs (X) |= _FP_IMPLBIT_SH_##fs; \
+ \
+ add2: \
+ /* Shift the mantissa of X to the right \
+ _FP_ADD_INTERNAL_EDIFF steps; remember to account \
+ later for the implicit MSB of Y. */ \
+ if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
+ _FP_FRAC_SRS_##wc (X, _FP_ADD_INTERNAL_ediff, \
+ _FP_WFRACBITS_##fs); \
+ else if (!_FP_FRAC_ZEROP_##wc (X)) \
+ _FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
+ _FP_FRAC_ADD_##wc (R, Y, X); \
+ } \
+ else \
+ { \
+ /* _FP_ADD_INTERNAL_ediff == 0. */ \
+ if (!_FP_EXP_NORMAL (fs, wc, X)) \
+ { \
+ if (X##_e == 0) \
+ { \
+ /* X and Y are zero or denormalized. */ \
+ R##_e = 0; \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ if (!_FP_FRAC_ZEROP_##wc (Y)) \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ goto add_done; \
+ } \
+ else if (_FP_FRAC_ZEROP_##wc (Y)) \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_FRAC_COPY_##wc (R, X); \
+ goto add_done; \
+ } \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_FRAC_ADD_##wc (R, X, Y); \
+ if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
+ { \
+ /* Normalized result. */ \
+ _FP_FRAC_HIGH_##fs (R) \
+ &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
+ R##_e = 1; \
+ } \
+ goto add_done; \
+ } \
+ } \
+ else \
+ { \
+ /* X and Y are NaN or Inf. */ \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
+ R##_e = _FP_EXPMAX_##fs; \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ else if (_FP_FRAC_ZEROP_##wc (Y)) \
+ _FP_FRAC_COPY_##wc (R, X); \
+ else \
+ _FP_CHOOSENAN_SEMIRAW (fs, wc, R, X, Y, OP); \
+ goto add_done; \
+ } \
+ } \
+ /* The exponents of X and Y, both normal, are equal. The \
+ implicit MSBs will always add to increase the \
+ exponent. */ \
+ _FP_FRAC_ADD_##wc (R, X, Y); \
+ R##_e = X##_e + 1; \
+ _FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
+ if (R##_e == _FP_EXPMAX_##fs) \
+ /* Overflow to infinity (depending on rounding mode). */ \
+ _FP_OVERFLOW_SEMIRAW (fs, wc, R); \
+ goto add_done; \
+ } \
+ add3: \
+ if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
+ { \
+ /* Overflow. */ \
+ _FP_FRAC_HIGH_##fs (R) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
+ R##_e++; \
+ _FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
+ if (R##_e == _FP_EXPMAX_##fs) \
+ /* Overflow to infinity (depending on rounding mode). */ \
+ _FP_OVERFLOW_SEMIRAW (fs, wc, R); \
+ } \
+ add_done: ; \
+ } \
+ else \
+ { \
+ /* Subtraction. */ \
+ __label__ sub1, sub2, sub3, norm, sub_done; \
+ int _FP_ADD_INTERNAL_ediff = X##_e - Y##_e; \
+ if (_FP_ADD_INTERNAL_ediff > 0) \
+ { \
+ R##_e = X##_e; \
+ R##_s = X##_s; \
+ if (Y##_e == 0) \
+ { \
+ /* Y is zero or denormalized. */ \
+ if (_FP_FRAC_ZEROP_##wc (Y)) \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
+ _FP_FRAC_COPY_##wc (R, X); \
+ goto sub_done; \
+ } \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_ADD_INTERNAL_ediff--; \
+ if (_FP_ADD_INTERNAL_ediff == 0) \
+ { \
+ _FP_FRAC_SUB_##wc (R, X, Y); \
+ goto sub3; \
+ } \
+ if (X##_e == _FP_EXPMAX_##fs) \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
+ _FP_FRAC_COPY_##wc (R, X); \
+ goto sub_done; \
+ } \
+ goto sub1; \
+ } \
+ } \
+ else if (X##_e == _FP_EXPMAX_##fs) \
+ { \
+ /* X is NaN or Inf, Y is normal. */ \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
+ _FP_FRAC_COPY_##wc (R, X); \
+ goto sub_done; \
+ } \
+ \
+ /* Insert implicit MSB of Y. */ \
+ _FP_FRAC_HIGH_##fs (Y) |= _FP_IMPLBIT_SH_##fs; \
+ \
+ sub1: \
+ /* Shift the mantissa of Y to the right \
+ _FP_ADD_INTERNAL_EDIFF steps; remember to account \
+ later for the implicit MSB of X. */ \
+ if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
+ _FP_FRAC_SRS_##wc (Y, _FP_ADD_INTERNAL_ediff, \
+ _FP_WFRACBITS_##fs); \
+ else if (!_FP_FRAC_ZEROP_##wc (Y)) \
+ _FP_FRAC_SET_##wc (Y, _FP_MINFRAC_##wc); \
+ _FP_FRAC_SUB_##wc (R, X, Y); \
+ } \
+ else if (_FP_ADD_INTERNAL_ediff < 0) \
+ { \
+ _FP_ADD_INTERNAL_ediff = -_FP_ADD_INTERNAL_ediff; \
+ R##_e = Y##_e; \
+ R##_s = Y##_s; \
+ if (X##_e == 0) \
+ { \
+ /* X is zero or denormalized. */ \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ goto sub_done; \
+ } \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_ADD_INTERNAL_ediff--; \
+ if (_FP_ADD_INTERNAL_ediff == 0) \
+ { \
+ _FP_FRAC_SUB_##wc (R, Y, X); \
+ goto sub3; \
+ } \
+ if (Y##_e == _FP_EXPMAX_##fs) \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ goto sub_done; \
+ } \
+ goto sub2; \
+ } \
+ } \
+ else if (Y##_e == _FP_EXPMAX_##fs) \
+ { \
+ /* Y is NaN or Inf, X is normal. */ \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ goto sub_done; \
+ } \
+ \
+ /* Insert implicit MSB of X. */ \
+ _FP_FRAC_HIGH_##fs (X) |= _FP_IMPLBIT_SH_##fs; \
+ \
+ sub2: \
+ /* Shift the mantissa of X to the right \
+ _FP_ADD_INTERNAL_EDIFF steps; remember to account \
+ later for the implicit MSB of Y. */ \
+ if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
+ _FP_FRAC_SRS_##wc (X, _FP_ADD_INTERNAL_ediff, \
+ _FP_WFRACBITS_##fs); \
+ else if (!_FP_FRAC_ZEROP_##wc (X)) \
+ _FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
+ _FP_FRAC_SUB_##wc (R, Y, X); \
+ } \
+ else \
+ { \
+ /* ediff == 0. */ \
+ if (!_FP_EXP_NORMAL (fs, wc, X)) \
+ { \
+ if (X##_e == 0) \
+ { \
+ /* X and Y are zero or denormalized. */ \
+ R##_e = 0; \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ if (_FP_FRAC_ZEROP_##wc (Y)) \
+ R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ R##_s = Y##_s; \
+ } \
+ goto sub_done; \
+ } \
+ else if (_FP_FRAC_ZEROP_##wc (Y)) \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_FRAC_COPY_##wc (R, X); \
+ R##_s = X##_s; \
+ goto sub_done; \
+ } \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_FRAC_SUB_##wc (R, X, Y); \
+ R##_s = X##_s; \
+ if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
+ { \
+ /* |X| < |Y|, negate result. */ \
+ _FP_FRAC_SUB_##wc (R, Y, X); \
+ R##_s = Y##_s; \
+ } \
+ else if (_FP_FRAC_ZEROP_##wc (R)) \
+ R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
+ goto sub_done; \
+ } \
+ } \
+ else \
+ { \
+ /* X and Y are NaN or Inf, of opposite signs. */ \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
+ _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
+ R##_e = _FP_EXPMAX_##fs; \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ if (_FP_FRAC_ZEROP_##wc (Y)) \
+ { \
+ /* Inf - Inf. */ \
+ R##_s = _FP_NANSIGN_##fs; \
+ _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
+ _FP_FRAC_SLL_##wc (R, _FP_WORKBITS); \
+ FP_SET_EXCEPTION (FP_EX_INVALID \
+ | FP_EX_INVALID_ISI); \
+ } \
+ else \
+ { \
+ /* Inf - NaN. */ \
+ R##_s = Y##_s; \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ } \
+ } \
+ else \
+ { \
+ if (_FP_FRAC_ZEROP_##wc (Y)) \
+ { \
+ /* NaN - Inf. */ \
+ R##_s = X##_s; \
+ _FP_FRAC_COPY_##wc (R, X); \
+ } \
+ else \
+ { \
+ /* NaN - NaN. */ \
+ _FP_CHOOSENAN_SEMIRAW (fs, wc, R, X, Y, OP); \
+ } \
+ } \
+ goto sub_done; \
+ } \
+ } \
+ /* The exponents of X and Y, both normal, are equal. The \
+ implicit MSBs cancel. */ \
+ R##_e = X##_e; \
+ _FP_FRAC_SUB_##wc (R, X, Y); \
+ R##_s = X##_s; \
+ if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
+ { \
+ /* |X| < |Y|, negate result. */ \
+ _FP_FRAC_SUB_##wc (R, Y, X); \
+ R##_s = Y##_s; \
+ } \
+ else if (_FP_FRAC_ZEROP_##wc (R)) \
+ { \
+ R##_e = 0; \
+ R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
+ goto sub_done; \
+ } \
+ goto norm; \
+ } \
+ sub3: \
+ if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
+ { \
+ int _FP_ADD_INTERNAL_diff; \
+ /* Carry into most significant bit of larger one of X and Y, \
+ canceling it; renormalize. */ \
+ _FP_FRAC_HIGH_##fs (R) &= _FP_IMPLBIT_SH_##fs - 1; \
+ norm: \
+ _FP_FRAC_CLZ_##wc (_FP_ADD_INTERNAL_diff, R); \
+ _FP_ADD_INTERNAL_diff -= _FP_WFRACXBITS_##fs; \
+ _FP_FRAC_SLL_##wc (R, _FP_ADD_INTERNAL_diff); \
+ if (R##_e <= _FP_ADD_INTERNAL_diff) \
+ { \
+ /* R is denormalized. */ \
+ _FP_ADD_INTERNAL_diff \
+ = _FP_ADD_INTERNAL_diff - R##_e + 1; \
+ _FP_FRAC_SRS_##wc (R, _FP_ADD_INTERNAL_diff, \
+ _FP_WFRACBITS_##fs); \
+ R##_e = 0; \
+ } \
+ else \
+ { \
+ R##_e -= _FP_ADD_INTERNAL_diff; \
+ _FP_FRAC_HIGH_##fs (R) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
+ } \
+ } \
+ sub_done: ; \
+ } \
+ } \
+ while (0)
+
+#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL (fs, wc, R, X, Y, '+')
+#define _FP_SUB(fs, wc, R, X, Y) \
+ do \
+ { \
+ if (!(Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
+ Y##_s ^= 1; \
+ _FP_ADD_INTERNAL (fs, wc, R, X, Y, '-'); \
+ } \
+ while (0)
+
+
+/* Main negation routine. The input value is raw. */
+
+#define _FP_NEG(fs, wc, R, X) \
+ do \
+ { \
+ _FP_FRAC_COPY_##wc (R, X); \
+ R##_e = X##_e; \
+ R##_s = 1 ^ X##_s; \
+ } \
+ while (0)
+
+
+/* Main multiplication routine. The input values should be cooked. */
+
+#define _FP_MUL(fs, wc, R, X, Y) \
+ do \
+ { \
+ R##_s = X##_s ^ Y##_s; \
+ R##_e = X##_e + Y##_e + 1; \
+ switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
+ { \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
+ R##_c = FP_CLS_NORMAL; \
+ \
+ _FP_MUL_MEAT_##fs (R, X, Y); \
+ \
+ if (_FP_FRAC_OVERP_##wc (fs, R)) \
+ _FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
+ else \
+ R##_e--; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
+ _FP_CHOOSENAN (fs, wc, R, X, Y, '*'); \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
+ R##_s = X##_s; \
+ /* FALLTHRU */ \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
+ _FP_FRAC_COPY_##wc (R, X); \
+ R##_c = X##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
+ R##_s = Y##_s; \
+ /* FALLTHRU */ \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ R##_c = Y##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
+ R##_s = _FP_NANSIGN_##fs; \
+ R##_c = FP_CLS_NAN; \
+ _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_IMZ); \
+ break; \
+ \
+ default: \
+ _FP_UNREACHABLE; \
+ } \
+ } \
+ while (0)
+
+
+/* Fused multiply-add. The input values should be cooked. */
+
+#define _FP_FMA(fs, wc, dwc, R, X, Y, Z) \
+ do \
+ { \
+ __label__ done_fma; \
+ FP_DECL_##fs (_FP_FMA_T); \
+ _FP_FMA_T##_s = X##_s ^ Y##_s; \
+ _FP_FMA_T##_e = X##_e + Y##_e + 1; \
+ switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
+ { \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
+ switch (Z##_c) \
+ { \
+ case FP_CLS_INF: \
+ case FP_CLS_NAN: \
+ R##_s = Z##_s; \
+ _FP_FRAC_COPY_##wc (R, Z); \
+ R##_c = Z##_c; \
+ break; \
+ \
+ case FP_CLS_ZERO: \
+ R##_c = FP_CLS_NORMAL; \
+ R##_s = _FP_FMA_T##_s; \
+ R##_e = _FP_FMA_T##_e; \
+ \
+ _FP_MUL_MEAT_##fs (R, X, Y); \
+ \
+ if (_FP_FRAC_OVERP_##wc (fs, R)) \
+ _FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
+ else \
+ R##_e--; \
+ break; \
+ \
+ case FP_CLS_NORMAL:; \
+ _FP_FRAC_DECL_##dwc (_FP_FMA_TD); \
+ _FP_FRAC_DECL_##dwc (_FP_FMA_ZD); \
+ _FP_FRAC_DECL_##dwc (_FP_FMA_RD); \
+ _FP_MUL_MEAT_DW_##fs (_FP_FMA_TD, X, Y); \
+ R##_e = _FP_FMA_T##_e; \
+ int _FP_FMA_tsh \
+ = _FP_FRAC_HIGHBIT_DW_##dwc (fs, _FP_FMA_TD) == 0; \
+ _FP_FMA_T##_e -= _FP_FMA_tsh; \
+ int _FP_FMA_ediff = _FP_FMA_T##_e - Z##_e; \
+ if (_FP_FMA_ediff >= 0) \
+ { \
+ int _FP_FMA_shift \
+ = _FP_WFRACBITS_##fs - _FP_FMA_tsh - _FP_FMA_ediff; \
+ if (_FP_FMA_shift <= -_FP_WFRACBITS_##fs) \
+ _FP_FRAC_SET_##dwc (_FP_FMA_ZD, _FP_MINFRAC_##dwc); \
+ else \
+ { \
+ _FP_FRAC_COPY_##dwc##_##wc (_FP_FMA_ZD, Z); \
+ if (_FP_FMA_shift < 0) \
+ _FP_FRAC_SRS_##dwc (_FP_FMA_ZD, -_FP_FMA_shift, \
+ _FP_WFRACBITS_DW_##fs); \
+ else if (_FP_FMA_shift > 0) \
+ _FP_FRAC_SLL_##dwc (_FP_FMA_ZD, _FP_FMA_shift); \
+ } \
+ R##_s = _FP_FMA_T##_s; \
+ if (_FP_FMA_T##_s == Z##_s) \
+ _FP_FRAC_ADD_##dwc (_FP_FMA_RD, _FP_FMA_TD, \
+ _FP_FMA_ZD); \
+ else \
+ { \
+ _FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_TD, \
+ _FP_FMA_ZD); \
+ if (_FP_FRAC_NEGP_##dwc (_FP_FMA_RD)) \
+ { \
+ R##_s = Z##_s; \
+ _FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
+ _FP_FMA_TD); \
+ } \
+ } \
+ } \
+ else \
+ { \
+ R##_e = Z##_e; \
+ R##_s = Z##_s; \
+ _FP_FRAC_COPY_##dwc##_##wc (_FP_FMA_ZD, Z); \
+ _FP_FRAC_SLL_##dwc (_FP_FMA_ZD, _FP_WFRACBITS_##fs); \
+ int _FP_FMA_shift = -_FP_FMA_ediff - _FP_FMA_tsh; \
+ if (_FP_FMA_shift >= _FP_WFRACBITS_DW_##fs) \
+ _FP_FRAC_SET_##dwc (_FP_FMA_TD, _FP_MINFRAC_##dwc); \
+ else if (_FP_FMA_shift > 0) \
+ _FP_FRAC_SRS_##dwc (_FP_FMA_TD, _FP_FMA_shift, \
+ _FP_WFRACBITS_DW_##fs); \
+ if (Z##_s == _FP_FMA_T##_s) \
+ _FP_FRAC_ADD_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
+ _FP_FMA_TD); \
+ else \
+ _FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
+ _FP_FMA_TD); \
+ } \
+ if (_FP_FRAC_ZEROP_##dwc (_FP_FMA_RD)) \
+ { \
+ if (_FP_FMA_T##_s == Z##_s) \
+ R##_s = Z##_s; \
+ else \
+ R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
+ _FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
+ R##_c = FP_CLS_ZERO; \
+ } \
+ else \
+ { \
+ int _FP_FMA_rlz; \
+ _FP_FRAC_CLZ_##dwc (_FP_FMA_rlz, _FP_FMA_RD); \
+ _FP_FMA_rlz -= _FP_WFRACXBITS_DW_##fs; \
+ R##_e -= _FP_FMA_rlz; \
+ int _FP_FMA_shift = _FP_WFRACBITS_##fs - _FP_FMA_rlz; \
+ if (_FP_FMA_shift > 0) \
+ _FP_FRAC_SRS_##dwc (_FP_FMA_RD, _FP_FMA_shift, \
+ _FP_WFRACBITS_DW_##fs); \
+ else if (_FP_FMA_shift < 0) \
+ _FP_FRAC_SLL_##dwc (_FP_FMA_RD, -_FP_FMA_shift); \
+ _FP_FRAC_COPY_##wc##_##dwc (R, _FP_FMA_RD); \
+ R##_c = FP_CLS_NORMAL; \
+ } \
+ break; \
+ } \
+ goto done_fma; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
+ _FP_CHOOSENAN (fs, wc, _FP_FMA_T, X, Y, '*'); \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
+ _FP_FMA_T##_s = X##_s; \
+ /* FALLTHRU */ \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
+ _FP_FRAC_COPY_##wc (_FP_FMA_T, X); \
+ _FP_FMA_T##_c = X##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
+ _FP_FMA_T##_s = Y##_s; \
+ /* FALLTHRU */ \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
+ _FP_FRAC_COPY_##wc (_FP_FMA_T, Y); \
+ _FP_FMA_T##_c = Y##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
+ _FP_FMA_T##_s = _FP_NANSIGN_##fs; \
+ _FP_FMA_T##_c = FP_CLS_NAN; \
+ _FP_FRAC_SET_##wc (_FP_FMA_T, _FP_NANFRAC_##fs); \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_IMZ_FMA); \
+ break; \
+ \
+ default: \
+ _FP_UNREACHABLE; \
+ } \
+ \
+ /* T = X * Y is zero, infinity or NaN. */ \
+ switch (_FP_CLS_COMBINE (_FP_FMA_T##_c, Z##_c)) \
+ { \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
+ _FP_CHOOSENAN (fs, wc, R, _FP_FMA_T, Z, '+'); \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
+ R##_s = _FP_FMA_T##_s; \
+ _FP_FRAC_COPY_##wc (R, _FP_FMA_T); \
+ R##_c = _FP_FMA_T##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
+ R##_s = Z##_s; \
+ _FP_FRAC_COPY_##wc (R, Z); \
+ R##_c = Z##_c; \
+ R##_e = Z##_e; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
+ if (_FP_FMA_T##_s == Z##_s) \
+ { \
+ R##_s = Z##_s; \
+ _FP_FRAC_COPY_##wc (R, Z); \
+ R##_c = Z##_c; \
+ } \
+ else \
+ { \
+ R##_s = _FP_NANSIGN_##fs; \
+ R##_c = FP_CLS_NAN; \
+ _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_ISI); \
+ } \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
+ if (_FP_FMA_T##_s == Z##_s) \
+ R##_s = Z##_s; \
+ else \
+ R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
+ _FP_FRAC_COPY_##wc (R, Z); \
+ R##_c = Z##_c; \
+ break; \
+ \
+ default: \
+ _FP_UNREACHABLE; \
+ } \
+ done_fma: ; \
+ } \
+ while (0)
+
+
+/* Main division routine. The input values should be cooked. */
+
+#define _FP_DIV(fs, wc, R, X, Y) \
+ do \
+ { \
+ R##_s = X##_s ^ Y##_s; \
+ R##_e = X##_e - Y##_e; \
+ switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
+ { \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
+ R##_c = FP_CLS_NORMAL; \
+ \
+ _FP_DIV_MEAT_##fs (R, X, Y); \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
+ _FP_CHOOSENAN (fs, wc, R, X, Y, '/'); \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
+ R##_s = X##_s; \
+ _FP_FRAC_COPY_##wc (R, X); \
+ R##_c = X##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
+ R##_s = Y##_s; \
+ _FP_FRAC_COPY_##wc (R, Y); \
+ R##_c = Y##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
+ R##_c = FP_CLS_ZERO; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
+ FP_SET_EXCEPTION (FP_EX_DIVZERO); \
+ /* FALLTHRU */ \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
+ R##_c = FP_CLS_INF; \
+ break; \
+ \
+ case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
+ case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
+ R##_s = _FP_NANSIGN_##fs; \
+ R##_c = FP_CLS_NAN; \
+ _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
+ FP_SET_EXCEPTION (FP_EX_INVALID \
+ | (X##_c == FP_CLS_INF \
+ ? FP_EX_INVALID_IDI \
+ : FP_EX_INVALID_ZDZ)); \
+ break; \
+ \
+ default: \
+ _FP_UNREACHABLE; \
+ } \
+ } \
+ while (0)
+
+
+/* Helper for comparisons. EX is 0 not to raise exceptions, 1 to
+ raise exceptions for signaling NaN operands, 2 to raise exceptions
+ for all NaN operands. Conditionals are organized to allow the
+ compiler to optimize away code based on the value of EX. */
+
+#define _FP_CMP_CHECK_NAN(fs, wc, X, Y, ex) \
+ do \
+ { \
+ /* The arguments are unordered, which may or may not result in \
+ an exception. */ \
+ if (ex) \
+ { \
+ /* At least some cases of unordered arguments result in \
+ exceptions; check whether this is one. */ \
+ if (FP_EX_INVALID_SNAN || FP_EX_INVALID_VC) \
+ { \
+ /* Check separately for each case of "invalid" \
+ exceptions. */ \
+ if ((ex) == 2) \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_VC); \
+ if (_FP_ISSIGNAN (fs, wc, X) \
+ || _FP_ISSIGNAN (fs, wc, Y)) \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_SNAN); \
+ } \
+ /* Otherwise, we only need to check whether to raise an \
+ exception, not which case or cases it is. */ \
+ else if ((ex) == 2 \
+ || _FP_ISSIGNAN (fs, wc, X) \
+ || _FP_ISSIGNAN (fs, wc, Y)) \
+ FP_SET_EXCEPTION (FP_EX_INVALID); \
+ } \
+ } \
+ while (0)
+
+/* Helper for comparisons. If denormal operands would raise an
+ exception, check for them, and flush to zero as appropriate
+ (otherwise, we need only check and flush to zero if it might affect
+ the result, which is done later with _FP_CMP_CHECK_FLUSH_ZERO). */
+#define _FP_CMP_CHECK_DENORM(fs, wc, X, Y) \
+ do \
+ { \
+ if (FP_EX_DENORM != 0) \
+ { \
+ /* We must ensure the correct exceptions are raised for \
+ denormal operands, even though this may not affect the \
+ result of the comparison. */ \
+ if (FP_DENORM_ZERO) \
+ { \
+ _FP_CHECK_FLUSH_ZERO (fs, wc, X); \
+ _FP_CHECK_FLUSH_ZERO (fs, wc, Y); \
+ } \
+ else \
+ { \
+ if ((X##_e == 0 && !_FP_FRAC_ZEROP_##wc (X)) \
+ || (Y##_e == 0 && !_FP_FRAC_ZEROP_##wc (Y))) \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ } \
+ } \
+ } \
+ while (0)
+
+/* Helper for comparisons. Check for flushing denormals for zero if
+ we didn't need to check earlier for any denormal operands. */
+#define _FP_CMP_CHECK_FLUSH_ZERO(fs, wc, X, Y) \
+ do \
+ { \
+ if (FP_EX_DENORM == 0) \
+ { \
+ _FP_CHECK_FLUSH_ZERO (fs, wc, X); \
+ _FP_CHECK_FLUSH_ZERO (fs, wc, Y); \
+ } \
+ } \
+ while (0)
+
+/* Main differential comparison routine. The inputs should be raw not
+ cooked. The return is -1, 0, 1 for normal values, UN
+ otherwise. */
+
+#define _FP_CMP(fs, wc, ret, X, Y, un, ex) \
+ do \
+ { \
+ _FP_CMP_CHECK_DENORM (fs, wc, X, Y); \
+ /* NANs are unordered. */ \
+ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
+ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
+ { \
+ (ret) = (un); \
+ _FP_CMP_CHECK_NAN (fs, wc, X, Y, (ex)); \
+ } \
+ else \
+ { \
+ int _FP_CMP_is_zero_x; \
+ int _FP_CMP_is_zero_y; \
+ \
+ _FP_CMP_CHECK_FLUSH_ZERO (fs, wc, X, Y); \
+ \
+ _FP_CMP_is_zero_x \
+ = (!X##_e && _FP_FRAC_ZEROP_##wc (X)) ? 1 : 0; \
+ _FP_CMP_is_zero_y \
+ = (!Y##_e && _FP_FRAC_ZEROP_##wc (Y)) ? 1 : 0; \
+ \
+ if (_FP_CMP_is_zero_x && _FP_CMP_is_zero_y) \
+ (ret) = 0; \
+ else if (_FP_CMP_is_zero_x) \
+ (ret) = Y##_s ? 1 : -1; \
+ else if (_FP_CMP_is_zero_y) \
+ (ret) = X##_s ? -1 : 1; \
+ else if (X##_s != Y##_s) \
+ (ret) = X##_s ? -1 : 1; \
+ else if (X##_e > Y##_e) \
+ (ret) = X##_s ? -1 : 1; \
+ else if (X##_e < Y##_e) \
+ (ret) = X##_s ? 1 : -1; \
+ else if (_FP_FRAC_GT_##wc (X, Y)) \
+ (ret) = X##_s ? -1 : 1; \
+ else if (_FP_FRAC_GT_##wc (Y, X)) \
+ (ret) = X##_s ? 1 : -1; \
+ else \
+ (ret) = 0; \
+ } \
+ } \
+ while (0)
+
+
+/* Simplification for strict equality. */
+
+#define _FP_CMP_EQ(fs, wc, ret, X, Y, ex) \
+ do \
+ { \
+ _FP_CMP_CHECK_DENORM (fs, wc, X, Y); \
+ /* NANs are unordered. */ \
+ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
+ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
+ { \
+ (ret) = 1; \
+ _FP_CMP_CHECK_NAN (fs, wc, X, Y, (ex)); \
+ } \
+ else \
+ { \
+ _FP_CMP_CHECK_FLUSH_ZERO (fs, wc, X, Y); \
+ \
+ (ret) = !(X##_e == Y##_e \
+ && _FP_FRAC_EQ_##wc (X, Y) \
+ && (X##_s == Y##_s \
+ || (!X##_e && _FP_FRAC_ZEROP_##wc (X)))); \
+ } \
+ } \
+ while (0)
+
+/* Version to test unordered. */
+
+#define _FP_CMP_UNORD(fs, wc, ret, X, Y, ex) \
+ do \
+ { \
+ _FP_CMP_CHECK_DENORM (fs, wc, X, Y); \
+ (ret) = ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
+ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))); \
+ if (ret) \
+ _FP_CMP_CHECK_NAN (fs, wc, X, Y, (ex)); \
+ } \
+ while (0)
+
+/* Main square root routine. The input value should be cooked. */
+
+#define _FP_SQRT(fs, wc, R, X) \
+ do \
+ { \
+ _FP_FRAC_DECL_##wc (_FP_SQRT_T); \
+ _FP_FRAC_DECL_##wc (_FP_SQRT_S); \
+ _FP_W_TYPE _FP_SQRT_q; \
+ switch (X##_c) \
+ { \
+ case FP_CLS_NAN: \
+ _FP_FRAC_COPY_##wc (R, X); \
+ R##_s = X##_s; \
+ R##_c = FP_CLS_NAN; \
+ break; \
+ case FP_CLS_INF: \
+ if (X##_s) \
+ { \
+ R##_s = _FP_NANSIGN_##fs; \
+ R##_c = FP_CLS_NAN; /* NAN */ \
+ _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_SQRT); \
+ } \
+ else \
+ { \
+ R##_s = 0; \
+ R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
+ } \
+ break; \
+ case FP_CLS_ZERO: \
+ R##_s = X##_s; \
+ R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
+ break; \
+ case FP_CLS_NORMAL: \
+ R##_s = 0; \
+ if (X##_s) \
+ { \
+ R##_c = FP_CLS_NAN; /* NAN */ \
+ R##_s = _FP_NANSIGN_##fs; \
+ _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_SQRT); \
+ break; \
+ } \
+ R##_c = FP_CLS_NORMAL; \
+ if (X##_e & 1) \
+ _FP_FRAC_SLL_##wc (X, 1); \
+ R##_e = X##_e >> 1; \
+ _FP_FRAC_SET_##wc (_FP_SQRT_S, _FP_ZEROFRAC_##wc); \
+ _FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
+ _FP_SQRT_q = _FP_OVERFLOW_##fs >> 1; \
+ _FP_SQRT_MEAT_##wc (R, _FP_SQRT_S, _FP_SQRT_T, X, \
+ _FP_SQRT_q); \
+ } \
+ } \
+ while (0)
+
+/* Convert from FP to integer. Input is raw. */
+
+/* RSIGNED can have following values:
+ 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
+ the result is either 0 or (2^rsize)-1 depending on the sign in such
+ case.
+ 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not,
+ NV is set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1
+ depending on the sign in such case.
+ 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not,
+ NV is set plus the result is reduced modulo 2^rsize.
+ -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
+ set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1
+ depending on the sign in such case. */
+#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
+ do \
+ { \
+ if (X##_e < _FP_EXPBIAS_##fs) \
+ { \
+ (r) = 0; \
+ if (X##_e == 0) \
+ { \
+ if (!_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ if (!FP_DENORM_ZERO) \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ } \
+ } \
+ else \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ } \
+ else if ((rsigned) == 2 \
+ && (X##_e \
+ >= ((_FP_EXPMAX_##fs \
+ < _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs + (rsize) - 1) \
+ ? _FP_EXPMAX_##fs \
+ : _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs + (rsize) - 1))) \
+ { \
+ /* Overflow resulting in 0. */ \
+ (r) = 0; \
+ FP_SET_EXCEPTION (FP_EX_INVALID \
+ | FP_EX_INVALID_CVI \
+ | ((FP_EX_INVALID_SNAN \
+ && _FP_ISSIGNAN (fs, wc, X)) \
+ ? FP_EX_INVALID_SNAN \
+ : 0)); \
+ } \
+ else if ((rsigned) != 2 \
+ && (X##_e >= (_FP_EXPMAX_##fs < _FP_EXPBIAS_##fs + (rsize) \
+ ? _FP_EXPMAX_##fs \
+ : (_FP_EXPBIAS_##fs + (rsize) \
+ - ((rsigned) > 0 || X##_s))) \
+ || (!(rsigned) && X##_s))) \
+ { \
+ /* Overflow or converting to the most negative integer. */ \
+ if (rsigned) \
+ { \
+ (r) = 1; \
+ (r) <<= (rsize) - 1; \
+ (r) -= 1 - X##_s; \
+ } \
+ else \
+ { \
+ (r) = 0; \
+ if (!X##_s) \
+ (r) = ~(r); \
+ } \
+ \
+ if (_FP_EXPBIAS_##fs + (rsize) - 1 < _FP_EXPMAX_##fs \
+ && (rsigned) \
+ && X##_s \
+ && X##_e == _FP_EXPBIAS_##fs + (rsize) - 1) \
+ { \
+ /* Possibly converting to most negative integer; check the \
+ mantissa. */ \
+ int _FP_TO_INT_inexact = 0; \
+ (void) ((_FP_FRACBITS_##fs > (rsize)) \
+ ? ({ \
+ _FP_FRAC_SRST_##wc (X, _FP_TO_INT_inexact, \
+ _FP_FRACBITS_##fs - (rsize), \
+ _FP_FRACBITS_##fs); \
+ 0; \
+ }) \
+ : 0); \
+ if (!_FP_FRAC_ZEROP_##wc (X)) \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
+ else if (_FP_TO_INT_inexact) \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ } \
+ else \
+ FP_SET_EXCEPTION (FP_EX_INVALID \
+ | FP_EX_INVALID_CVI \
+ | ((FP_EX_INVALID_SNAN \
+ && _FP_ISSIGNAN (fs, wc, X)) \
+ ? FP_EX_INVALID_SNAN \
+ : 0)); \
+ } \
+ else \
+ { \
+ int _FP_TO_INT_inexact = 0; \
+ _FP_FRAC_HIGH_RAW_##fs (X) |= _FP_IMPLBIT_##fs; \
+ if (X##_e >= _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs - 1) \
+ { \
+ _FP_FRAC_ASSEMBLE_##wc ((r), X, (rsize)); \
+ (r) <<= X##_e - _FP_EXPBIAS_##fs - _FP_FRACBITS_##fs + 1; \
+ } \
+ else \
+ { \
+ _FP_FRAC_SRST_##wc (X, _FP_TO_INT_inexact, \
+ (_FP_FRACBITS_##fs + _FP_EXPBIAS_##fs - 1 \
+ - X##_e), \
+ _FP_FRACBITS_##fs); \
+ _FP_FRAC_ASSEMBLE_##wc ((r), X, (rsize)); \
+ } \
+ if ((rsigned) && X##_s) \
+ (r) = -(r); \
+ if ((rsigned) == 2 && X##_e >= _FP_EXPBIAS_##fs + (rsize) - 1) \
+ { \
+ /* Overflow or converting to the most negative integer. */ \
+ if (X##_e > _FP_EXPBIAS_##fs + (rsize) - 1 \
+ || !X##_s \
+ || (r) != (((typeof (r)) 1) << ((rsize) - 1))) \
+ { \
+ _FP_TO_INT_inexact = 0; \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
+ } \
+ } \
+ if (_FP_TO_INT_inexact) \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ } \
+ } \
+ while (0)
+
+/* Convert from floating point to integer, rounding according to the
+ current rounding direction. Input is raw. RSIGNED is as for
+ _FP_TO_INT. */
+#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \
+ do \
+ { \
+ __label__ _FP_TO_INT_ROUND_done; \
+ if (X##_e < _FP_EXPBIAS_##fs) \
+ { \
+ int _FP_TO_INT_ROUND_rounds_away = 0; \
+ if (X##_e == 0) \
+ { \
+ if (_FP_FRAC_ZEROP_##wc (X)) \
+ { \
+ (r) = 0; \
+ goto _FP_TO_INT_ROUND_done; \
+ } \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ if (FP_DENORM_ZERO) \
+ { \
+ (r) = 0; \
+ goto _FP_TO_INT_ROUND_done; \
+ } \
+ } \
+ } \
+ /* The result is 0, 1 or -1 depending on the rounding mode; \
+ -1 may cause overflow in the unsigned case. */ \
+ switch (FP_ROUNDMODE) \
+ { \
+ case FP_RND_NEAREST: \
+ _FP_TO_INT_ROUND_rounds_away \
+ = (X##_e == _FP_EXPBIAS_##fs - 1 \
+ && !_FP_FRAC_ZEROP_##wc (X)); \
+ break; \
+ case FP_RND_ZERO: \
+ /* _FP_TO_INT_ROUND_rounds_away is already 0. */ \
+ break; \
+ case FP_RND_PINF: \
+ _FP_TO_INT_ROUND_rounds_away = !X##_s; \
+ break; \
+ case FP_RND_MINF: \
+ _FP_TO_INT_ROUND_rounds_away = X##_s; \
+ break; \
+ } \
+ if ((rsigned) == 0 && _FP_TO_INT_ROUND_rounds_away && X##_s) \
+ { \
+ /* Result of -1 for an unsigned conversion. */ \
+ (r) = 0; \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
+ } \
+ else if ((rsize) == 1 && (rsigned) > 0 \
+ && _FP_TO_INT_ROUND_rounds_away && !X##_s) \
+ { \
+ /* Converting to a 1-bit signed bit-field, which cannot \
+ represent +1. */ \
+ (r) = ((rsigned) == 2 ? -1 : 0); \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
+ } \
+ else \
+ { \
+ (r) = (_FP_TO_INT_ROUND_rounds_away \
+ ? (X##_s ? -1 : 1) \
+ : 0); \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ } \
+ } \
+ else if ((rsigned) == 2 \
+ && (X##_e \
+ >= ((_FP_EXPMAX_##fs \
+ < _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs + (rsize) - 1) \
+ ? _FP_EXPMAX_##fs \
+ : _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs + (rsize) - 1))) \
+ { \
+ /* Overflow resulting in 0. */ \
+ (r) = 0; \
+ FP_SET_EXCEPTION (FP_EX_INVALID \
+ | FP_EX_INVALID_CVI \
+ | ((FP_EX_INVALID_SNAN \
+ && _FP_ISSIGNAN (fs, wc, X)) \
+ ? FP_EX_INVALID_SNAN \
+ : 0)); \
+ } \
+ else if ((rsigned) != 2 \
+ && (X##_e >= (_FP_EXPMAX_##fs < _FP_EXPBIAS_##fs + (rsize) \
+ ? _FP_EXPMAX_##fs \
+ : (_FP_EXPBIAS_##fs + (rsize) \
+ - ((rsigned) > 0 && !X##_s))) \
+ || ((rsigned) == 0 && X##_s))) \
+ { \
+ /* Definite overflow (does not require rounding to tell). */ \
+ if ((rsigned) != 0) \
+ { \
+ (r) = 1; \
+ (r) <<= (rsize) - 1; \
+ (r) -= 1 - X##_s; \
+ } \
+ else \
+ { \
+ (r) = 0; \
+ if (!X##_s) \
+ (r) = ~(r); \
+ } \
+ \
+ FP_SET_EXCEPTION (FP_EX_INVALID \
+ | FP_EX_INVALID_CVI \
+ | ((FP_EX_INVALID_SNAN \
+ && _FP_ISSIGNAN (fs, wc, X)) \
+ ? FP_EX_INVALID_SNAN \
+ : 0)); \
+ } \
+ else \
+ { \
+ /* The value is finite, with magnitude at least 1. If \
+ the conversion is unsigned, the value is positive. \
+ If RSIGNED is not 2, the value does not definitely \
+ overflow by virtue of its exponent, but may still turn \
+ out to overflow after rounding; if RSIGNED is 2, the \
+ exponent may be such that the value definitely overflows, \
+ but at least one mantissa bit will not be shifted out. */ \
+ int _FP_TO_INT_ROUND_inexact = 0; \
+ _FP_FRAC_HIGH_RAW_##fs (X) |= _FP_IMPLBIT_##fs; \
+ if (X##_e >= _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs - 1) \
+ { \
+ /* The value is an integer, no rounding needed. */ \
+ _FP_FRAC_ASSEMBLE_##wc ((r), X, (rsize)); \
+ (r) <<= X##_e - _FP_EXPBIAS_##fs - _FP_FRACBITS_##fs + 1; \
+ } \
+ else \
+ { \
+ /* May need to shift in order to round (unless there \
+ are exactly _FP_WORKBITS fractional bits already). */ \
+ int _FP_TO_INT_ROUND_rshift \
+ = (_FP_FRACBITS_##fs + _FP_EXPBIAS_##fs \
+ - 1 - _FP_WORKBITS - X##_e); \
+ if (_FP_TO_INT_ROUND_rshift > 0) \
+ _FP_FRAC_SRS_##wc (X, _FP_TO_INT_ROUND_rshift, \
+ _FP_WFRACBITS_##fs); \
+ else if (_FP_TO_INT_ROUND_rshift < 0) \
+ _FP_FRAC_SLL_##wc (X, -_FP_TO_INT_ROUND_rshift); \
+ /* Round like _FP_ROUND, but setting \
+ _FP_TO_INT_ROUND_inexact instead of directly setting \
+ the "inexact" exception, since it may turn out we \
+ should set "invalid" instead. */ \
+ if (_FP_FRAC_LOW_##wc (X) & 7) \
+ { \
+ _FP_TO_INT_ROUND_inexact = 1; \
+ switch (FP_ROUNDMODE) \
+ { \
+ case FP_RND_NEAREST: \
+ _FP_ROUND_NEAREST (wc, X); \
+ break; \
+ case FP_RND_ZERO: \
+ _FP_ROUND_ZERO (wc, X); \
+ break; \
+ case FP_RND_PINF: \
+ _FP_ROUND_PINF (wc, X); \
+ break; \
+ case FP_RND_MINF: \
+ _FP_ROUND_MINF (wc, X); \
+ break; \
+ } \
+ } \
+ _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
+ _FP_FRAC_ASSEMBLE_##wc ((r), X, (rsize)); \
+ } \
+ if ((rsigned) != 0 && X##_s) \
+ (r) = -(r); \
+ /* An exponent of RSIZE - 1 always needs testing for \
+ overflow (either directly overflowing, or overflowing \
+ when rounding up results in 2^RSIZE). An exponent of \
+ RSIZE - 2 can overflow for positive values when rounding \
+ up to 2^(RSIZE-1), but cannot overflow for negative \
+ values. Smaller exponents cannot overflow. */ \
+ if (X##_e >= (_FP_EXPBIAS_##fs + (rsize) - 1 \
+ - ((rsigned) > 0 && !X##_s))) \
+ { \
+ if (X##_e > _FP_EXPBIAS_##fs + (rsize) - 1 \
+ || (X##_e == _FP_EXPBIAS_##fs + (rsize) - 1 \
+ && (X##_s \
+ ? (r) != (((typeof (r)) 1) << ((rsize) - 1)) \
+ : ((rsigned) > 0 || (r) == 0))) \
+ || ((rsigned) > 0 \
+ && !X##_s \
+ && X##_e == _FP_EXPBIAS_##fs + (rsize) - 2 \
+ && (r) == (((typeof (r)) 1) << ((rsize) - 1)))) \
+ { \
+ if ((rsigned) != 2) \
+ { \
+ if ((rsigned) != 0) \
+ { \
+ (r) = 1; \
+ (r) <<= (rsize) - 1; \
+ (r) -= 1 - X##_s; \
+ } \
+ else \
+ { \
+ (r) = 0; \
+ (r) = ~(r); \
+ } \
+ } \
+ _FP_TO_INT_ROUND_inexact = 0; \
+ FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
+ } \
+ } \
+ if (_FP_TO_INT_ROUND_inexact) \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ } \
+ _FP_TO_INT_ROUND_done: ; \
+ } \
+ while (0)
+
+/* Convert integer to fp. Output is raw. RTYPE is unsigned even if
+ input is signed. */
+#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
+ do \
+ { \
+ __label__ pack_semiraw; \
+ if (r) \
+ { \
+ rtype _FP_FROM_INT_ur = (r); \
+ \
+ if ((X##_s = ((r) < 0))) \
+ _FP_FROM_INT_ur = -_FP_FROM_INT_ur; \
+ \
+ _FP_STATIC_ASSERT ((rsize) <= 2 * _FP_W_TYPE_SIZE, \
+ "rsize too large"); \
+ (void) (((rsize) <= _FP_W_TYPE_SIZE) \
+ ? ({ \
+ int _FP_FROM_INT_lz; \
+ __FP_CLZ (_FP_FROM_INT_lz, \
+ (_FP_W_TYPE) _FP_FROM_INT_ur); \
+ X##_e = (_FP_EXPBIAS_##fs + _FP_W_TYPE_SIZE - 1 \
+ - _FP_FROM_INT_lz); \
+ }) \
+ : ({ \
+ int _FP_FROM_INT_lz; \
+ __FP_CLZ_2 (_FP_FROM_INT_lz, \
+ (_FP_W_TYPE) (_FP_FROM_INT_ur \
+ >> _FP_W_TYPE_SIZE), \
+ (_FP_W_TYPE) _FP_FROM_INT_ur); \
+ X##_e = (_FP_EXPBIAS_##fs + 2 * _FP_W_TYPE_SIZE - 1 \
+ - _FP_FROM_INT_lz); \
+ })); \
+ \
+ if ((rsize) - 1 + _FP_EXPBIAS_##fs >= _FP_EXPMAX_##fs \
+ && X##_e >= _FP_EXPMAX_##fs) \
+ { \
+ /* Exponent too big; overflow to infinity. (May also \
+ happen after rounding below.) */ \
+ _FP_OVERFLOW_SEMIRAW (fs, wc, X); \
+ goto pack_semiraw; \
+ } \
+ \
+ if ((rsize) <= _FP_FRACBITS_##fs \
+ || X##_e < _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs) \
+ { \
+ /* Exactly representable; shift left. */ \
+ _FP_FRAC_DISASSEMBLE_##wc (X, _FP_FROM_INT_ur, (rsize)); \
+ if (_FP_EXPBIAS_##fs + _FP_FRACBITS_##fs - 1 - X##_e > 0) \
+ _FP_FRAC_SLL_##wc (X, (_FP_EXPBIAS_##fs \
+ + _FP_FRACBITS_##fs - 1 - X##_e)); \
+ } \
+ else \
+ { \
+ /* More bits in integer than in floating type; need to \
+ round. */ \
+ if (_FP_EXPBIAS_##fs + _FP_WFRACBITS_##fs - 1 < X##_e) \
+ _FP_FROM_INT_ur \
+ = ((_FP_FROM_INT_ur >> (X##_e - _FP_EXPBIAS_##fs \
+ - _FP_WFRACBITS_##fs + 1)) \
+ | ((_FP_FROM_INT_ur \
+ << ((rsize) - (X##_e - _FP_EXPBIAS_##fs \
+ - _FP_WFRACBITS_##fs + 1))) \
+ != 0)); \
+ _FP_FRAC_DISASSEMBLE_##wc (X, _FP_FROM_INT_ur, (rsize)); \
+ if ((_FP_EXPBIAS_##fs + _FP_WFRACBITS_##fs - 1 - X##_e) > 0) \
+ _FP_FRAC_SLL_##wc (X, (_FP_EXPBIAS_##fs \
+ + _FP_WFRACBITS_##fs - 1 - X##_e)); \
+ _FP_FRAC_HIGH_##fs (X) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
+ pack_semiraw: \
+ _FP_PACK_SEMIRAW (fs, wc, X); \
+ } \
+ } \
+ else \
+ { \
+ X##_s = 0; \
+ X##_e = 0; \
+ _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
+ } \
+ } \
+ while (0)
+
+
+/* Extend from a narrower floating-point format to a wider one. Input
+ and output are raw. If CHECK_NAN, then signaling NaNs are
+ converted to quiet with the "invalid" exception raised; otherwise
+ signaling NaNs remain signaling with no exception. */
+#define _FP_EXTEND_CNAN(dfs, sfs, dwc, swc, D, S, check_nan) \
+ do \
+ { \
+ _FP_STATIC_ASSERT (_FP_FRACBITS_##dfs >= _FP_FRACBITS_##sfs, \
+ "destination mantissa narrower than source"); \
+ _FP_STATIC_ASSERT ((_FP_EXPMAX_##dfs - _FP_EXPBIAS_##dfs \
+ >= _FP_EXPMAX_##sfs - _FP_EXPBIAS_##sfs), \
+ "destination max exponent smaller" \
+ " than source"); \
+ _FP_STATIC_ASSERT (((_FP_EXPBIAS_##dfs \
+ >= (_FP_EXPBIAS_##sfs \
+ + _FP_FRACBITS_##sfs - 1)) \
+ || (_FP_EXPBIAS_##dfs == _FP_EXPBIAS_##sfs)), \
+ "source subnormals do not all become normal," \
+ " but bias not the same"); \
+ D##_s = S##_s; \
+ _FP_FRAC_COPY_##dwc##_##swc (D, S); \
+ if (_FP_EXP_NORMAL (sfs, swc, S)) \
+ { \
+ D##_e = S##_e + _FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs; \
+ _FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs - _FP_FRACBITS_##sfs)); \
+ } \
+ else \
+ { \
+ if (S##_e == 0) \
+ { \
+ _FP_CHECK_FLUSH_ZERO (sfs, swc, S); \
+ if (_FP_FRAC_ZEROP_##swc (S)) \
+ D##_e = 0; \
+ else if (_FP_EXPBIAS_##dfs \
+ < _FP_EXPBIAS_##sfs + _FP_FRACBITS_##sfs - 1) \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs \
+ - _FP_FRACBITS_##sfs)); \
+ D##_e = 0; \
+ if (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW) \
+ FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
+ } \
+ else \
+ { \
+ int FP_EXTEND_lz; \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ _FP_FRAC_CLZ_##swc (FP_EXTEND_lz, S); \
+ _FP_FRAC_SLL_##dwc (D, \
+ FP_EXTEND_lz + _FP_FRACBITS_##dfs \
+ - _FP_FRACTBITS_##sfs); \
+ D##_e = (_FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs + 1 \
+ + _FP_FRACXBITS_##sfs - FP_EXTEND_lz); \
+ } \
+ } \
+ else \
+ { \
+ D##_e = _FP_EXPMAX_##dfs; \
+ if (!_FP_FRAC_ZEROP_##swc (S)) \
+ { \
+ if (check_nan && _FP_FRAC_SNANP (sfs, S)) \
+ FP_SET_EXCEPTION (FP_EX_INVALID \
+ | FP_EX_INVALID_SNAN); \
+ _FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs \
+ - _FP_FRACBITS_##sfs)); \
+ if (check_nan) \
+ _FP_SETQNAN (dfs, dwc, D); \
+ } \
+ } \
+ } \
+ } \
+ while (0)
+
+#define FP_EXTEND(dfs, sfs, dwc, swc, D, S) \
+ _FP_EXTEND_CNAN (dfs, sfs, dwc, swc, D, S, 1)
+
+/* Truncate from a wider floating-point format to a narrower one.
+ Input and output are semi-raw. */
+#define FP_TRUNC(dfs, sfs, dwc, swc, D, S) \
+ do \
+ { \
+ _FP_STATIC_ASSERT (_FP_FRACBITS_##sfs >= _FP_FRACBITS_##dfs, \
+ "destination mantissa wider than source"); \
+ _FP_STATIC_ASSERT (((_FP_EXPBIAS_##sfs \
+ >= (_FP_EXPBIAS_##dfs \
+ + _FP_FRACBITS_##dfs - 1)) \
+ || _FP_EXPBIAS_##sfs == _FP_EXPBIAS_##dfs), \
+ "source subnormals do not all become same," \
+ " but bias not the same"); \
+ D##_s = S##_s; \
+ if (_FP_EXP_NORMAL (sfs, swc, S)) \
+ { \
+ D##_e = S##_e + _FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs; \
+ if (D##_e >= _FP_EXPMAX_##dfs) \
+ _FP_OVERFLOW_SEMIRAW (dfs, dwc, D); \
+ else \
+ { \
+ if (D##_e <= 0) \
+ { \
+ if (D##_e < 1 - _FP_FRACBITS_##dfs) \
+ { \
+ _FP_FRAC_SET_##swc (S, _FP_ZEROFRAC_##swc); \
+ _FP_FRAC_LOW_##swc (S) |= 1; \
+ } \
+ else \
+ { \
+ _FP_FRAC_HIGH_##sfs (S) |= _FP_IMPLBIT_SH_##sfs; \
+ _FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
+ - _FP_WFRACBITS_##dfs \
+ + 1 - D##_e), \
+ _FP_WFRACBITS_##sfs); \
+ } \
+ D##_e = 0; \
+ } \
+ else \
+ _FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
+ - _FP_WFRACBITS_##dfs), \
+ _FP_WFRACBITS_##sfs); \
+ _FP_FRAC_COPY_##dwc##_##swc (D, S); \
+ } \
+ } \
+ else \
+ { \
+ if (S##_e == 0) \
+ { \
+ _FP_CHECK_FLUSH_ZERO (sfs, swc, S); \
+ D##_e = 0; \
+ if (_FP_FRAC_ZEROP_##swc (S)) \
+ _FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
+ else \
+ { \
+ FP_SET_EXCEPTION (FP_EX_DENORM); \
+ if (_FP_EXPBIAS_##sfs \
+ < _FP_EXPBIAS_##dfs + _FP_FRACBITS_##dfs - 1) \
+ { \
+ _FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
+ - _FP_WFRACBITS_##dfs), \
+ _FP_WFRACBITS_##sfs); \
+ _FP_FRAC_COPY_##dwc##_##swc (D, S); \
+ } \
+ else \
+ { \
+ _FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
+ _FP_FRAC_LOW_##dwc (D) |= 1; \
+ } \
+ } \
+ } \
+ else \
+ { \
+ D##_e = _FP_EXPMAX_##dfs; \
+ if (_FP_FRAC_ZEROP_##swc (S)) \
+ _FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
+ else \
+ { \
+ _FP_CHECK_SIGNAN_SEMIRAW (sfs, swc, S); \
+ _FP_FRAC_SRL_##swc (S, (_FP_WFRACBITS_##sfs \
+ - _FP_WFRACBITS_##dfs)); \
+ _FP_FRAC_COPY_##dwc##_##swc (D, S); \
+ /* Semi-raw NaN must have all workbits cleared. */ \
+ _FP_FRAC_LOW_##dwc (D) \
+ &= ~(_FP_W_TYPE) ((1 << _FP_WORKBITS) - 1); \
+ _FP_SETQNAN_SEMIRAW (dfs, dwc, D); \
+ } \
+ } \
+ } \
+ } \
+ while (0)
+
+/* Helper primitives. */
+
+/* Count leading zeros in a word. */
+
+#ifndef __FP_CLZ
+/* GCC 3.4 and later provide the builtins for us. */
+# define __FP_CLZ(r, x) \
+ do \
+ { \
+ _FP_STATIC_ASSERT ((sizeof (_FP_W_TYPE) == sizeof (unsigned int) \
+ || (sizeof (_FP_W_TYPE) \
+ == sizeof (unsigned long)) \
+ || (sizeof (_FP_W_TYPE) \
+ == sizeof (unsigned long long))), \
+ "_FP_W_TYPE size unsupported for clz"); \
+ if (sizeof (_FP_W_TYPE) == sizeof (unsigned int)) \
+ (r) = __builtin_clz (x); \
+ else if (sizeof (_FP_W_TYPE) == sizeof (unsigned long)) \
+ (r) = __builtin_clzl (x); \
+ else /* sizeof (_FP_W_TYPE) == sizeof (unsigned long long). */ \
+ (r) = __builtin_clzll (x); \
+ } \
+ while (0)
+#endif /* ndef __FP_CLZ */
+
+#define _FP_DIV_HELP_imm(q, r, n, d) \
+ do \
+ { \
+ (q) = (n) / (d), (r) = (n) % (d); \
+ } \
+ while (0)
+
+
+/* A restoring bit-by-bit division primitive. */
+
+#define _FP_DIV_MEAT_N_loop(fs, wc, R, X, Y) \
+ do \
+ { \
+ int _FP_DIV_MEAT_N_loop_count = _FP_WFRACBITS_##fs; \
+ _FP_FRAC_DECL_##wc (_FP_DIV_MEAT_N_loop_u); \
+ _FP_FRAC_DECL_##wc (_FP_DIV_MEAT_N_loop_v); \
+ _FP_FRAC_COPY_##wc (_FP_DIV_MEAT_N_loop_u, X); \
+ _FP_FRAC_COPY_##wc (_FP_DIV_MEAT_N_loop_v, Y); \
+ _FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
+ /* Normalize _FP_DIV_MEAT_N_LOOP_U and _FP_DIV_MEAT_N_LOOP_V. */ \
+ _FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_u, _FP_WFRACXBITS_##fs); \
+ _FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_v, _FP_WFRACXBITS_##fs); \
+ /* First round. Since the operands are normalized, either the \
+ first or second bit will be set in the fraction. Produce a \
+ normalized result by checking which and adjusting the loop \
+ count and exponent accordingly. */ \
+ if (_FP_FRAC_GE_1 (_FP_DIV_MEAT_N_loop_u, _FP_DIV_MEAT_N_loop_v)) \
+ { \
+ _FP_FRAC_SUB_##wc (_FP_DIV_MEAT_N_loop_u, \
+ _FP_DIV_MEAT_N_loop_u, \
+ _FP_DIV_MEAT_N_loop_v); \
+ _FP_FRAC_LOW_##wc (R) |= 1; \
+ _FP_DIV_MEAT_N_loop_count--; \
+ } \
+ else \
+ R##_e--; \
+ /* Subsequent rounds. */ \
+ do \
+ { \
+ int _FP_DIV_MEAT_N_loop_msb \
+ = (_FP_WS_TYPE) _FP_FRAC_HIGH_##wc (_FP_DIV_MEAT_N_loop_u) < 0; \
+ _FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_u, 1); \
+ _FP_FRAC_SLL_##wc (R, 1); \
+ if (_FP_DIV_MEAT_N_loop_msb \
+ || _FP_FRAC_GE_1 (_FP_DIV_MEAT_N_loop_u, \
+ _FP_DIV_MEAT_N_loop_v)) \
+ { \
+ _FP_FRAC_SUB_##wc (_FP_DIV_MEAT_N_loop_u, \
+ _FP_DIV_MEAT_N_loop_u, \
+ _FP_DIV_MEAT_N_loop_v); \
+ _FP_FRAC_LOW_##wc (R) |= 1; \
+ } \
+ } \
+ while (--_FP_DIV_MEAT_N_loop_count > 0); \
+ /* If there's anything left in _FP_DIV_MEAT_N_LOOP_U, the result \
+ is inexact. */ \
+ _FP_FRAC_LOW_##wc (R) \
+ |= !_FP_FRAC_ZEROP_##wc (_FP_DIV_MEAT_N_loop_u); \
+ } \
+ while (0)
+
+#define _FP_DIV_MEAT_1_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 1, R, X, Y)
+#define _FP_DIV_MEAT_2_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 2, R, X, Y)
+#define _FP_DIV_MEAT_4_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 4, R, X, Y)
+
+#endif /* !SOFT_FP_OP_COMMON_H */
new file mode 100644
@@ -0,0 +1,330 @@
+/* Software floating-point emulation.
+ Definitions for IEEE Quad Precision.
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Richard Henderson (rth@cygnus.com),
+ Jakub Jelinek (jj@ultra.linux.cz),
+ David S. Miller (davem@redhat.com) and
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_QUAD_H
+#define SOFT_FP_QUAD_H 1
+
+#if _FP_W_TYPE_SIZE < 32
+# error "Here's a nickel, kid. Go buy yourself a real computer."
+#endif
+
+#if _FP_W_TYPE_SIZE < 64
+# define _FP_FRACTBITS_Q (4*_FP_W_TYPE_SIZE)
+# define _FP_FRACTBITS_DW_Q (8*_FP_W_TYPE_SIZE)
+#else
+# define _FP_FRACTBITS_Q (2*_FP_W_TYPE_SIZE)
+# define _FP_FRACTBITS_DW_Q (4*_FP_W_TYPE_SIZE)
+#endif
+
+#define _FP_FRACBITS_Q 113
+#define _FP_FRACXBITS_Q (_FP_FRACTBITS_Q - _FP_FRACBITS_Q)
+#define _FP_WFRACBITS_Q (_FP_WORKBITS + _FP_FRACBITS_Q)
+#define _FP_WFRACXBITS_Q (_FP_FRACTBITS_Q - _FP_WFRACBITS_Q)
+#define _FP_EXPBITS_Q 15
+#define _FP_EXPBIAS_Q 16383
+#define _FP_EXPMAX_Q 32767
+
+#define _FP_QNANBIT_Q \
+ ((_FP_W_TYPE) 1 << (_FP_FRACBITS_Q-2) % _FP_W_TYPE_SIZE)
+#define _FP_QNANBIT_SH_Q \
+ ((_FP_W_TYPE) 1 << (_FP_FRACBITS_Q-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_Q \
+ ((_FP_W_TYPE) 1 << (_FP_FRACBITS_Q-1) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_SH_Q \
+ ((_FP_W_TYPE) 1 << (_FP_FRACBITS_Q-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
+#define _FP_OVERFLOW_Q \
+ ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_Q % _FP_W_TYPE_SIZE))
+
+#define _FP_WFRACBITS_DW_Q (2 * _FP_WFRACBITS_Q)
+#define _FP_WFRACXBITS_DW_Q (_FP_FRACTBITS_DW_Q - _FP_WFRACBITS_DW_Q)
+#define _FP_HIGHBIT_DW_Q \
+ ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_Q - 1) % _FP_W_TYPE_SIZE)
+
+typedef float TFtype __attribute__ ((mode (TF)));
+
+#if _FP_W_TYPE_SIZE < 64
+
+union _FP_UNION_Q
+{
+ TFtype flt;
+ struct _FP_STRUCT_LAYOUT
+ {
+# if __BYTE_ORDER == __BIG_ENDIAN
+ unsigned sign : 1;
+ unsigned exp : _FP_EXPBITS_Q;
+ unsigned long frac3 : _FP_FRACBITS_Q - (_FP_IMPLBIT_Q != 0)-(_FP_W_TYPE_SIZE * 3);
+ unsigned long frac2 : _FP_W_TYPE_SIZE;
+ unsigned long frac1 : _FP_W_TYPE_SIZE;
+ unsigned long frac0 : _FP_W_TYPE_SIZE;
+# else
+ unsigned long frac0 : _FP_W_TYPE_SIZE;
+ unsigned long frac1 : _FP_W_TYPE_SIZE;
+ unsigned long frac2 : _FP_W_TYPE_SIZE;
+ unsigned long frac3 : _FP_FRACBITS_Q - (_FP_IMPLBIT_Q != 0)-(_FP_W_TYPE_SIZE * 3);
+ unsigned exp : _FP_EXPBITS_Q;
+ unsigned sign : 1;
+# endif /* not bigendian */
+ } bits __attribute__ ((packed));
+};
+
+
+# define FP_DECL_Q(X) _FP_DECL (4, X)
+# define FP_UNPACK_RAW_Q(X, val) _FP_UNPACK_RAW_4 (Q, X, (val))
+# define FP_UNPACK_RAW_QP(X, val) _FP_UNPACK_RAW_4_P (Q, X, (val))
+# define FP_PACK_RAW_Q(val, X) _FP_PACK_RAW_4 (Q, (val), X)
+# define FP_PACK_RAW_QP(val, X) \
+ do \
+ { \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_4_P (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_Q(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_4 (Q, X, (val)); \
+ _FP_UNPACK_CANONICAL (Q, 4, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_QP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_4_P (Q, X, (val)); \
+ _FP_UNPACK_CANONICAL (Q, 4, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_SEMIRAW_Q(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_4 (Q, X, (val)); \
+ _FP_UNPACK_SEMIRAW (Q, 4, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_SEMIRAW_QP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_4_P (Q, X, (val)); \
+ _FP_UNPACK_SEMIRAW (Q, 4, X); \
+ } \
+ while (0)
+
+# define FP_PACK_Q(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (Q, 4, X); \
+ _FP_PACK_RAW_4 (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_QP(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (Q, 4, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_4_P (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_SEMIRAW_Q(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (Q, 4, X); \
+ _FP_PACK_RAW_4 (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_SEMIRAW_QP(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (Q, 4, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_4_P (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_ISSIGNAN_Q(X) _FP_ISSIGNAN (Q, 4, X)
+# define FP_NEG_Q(R, X) _FP_NEG (Q, 4, R, X)
+# define FP_ADD_Q(R, X, Y) _FP_ADD (Q, 4, R, X, Y)
+# define FP_SUB_Q(R, X, Y) _FP_SUB (Q, 4, R, X, Y)
+# define FP_MUL_Q(R, X, Y) _FP_MUL (Q, 4, R, X, Y)
+# define FP_DIV_Q(R, X, Y) _FP_DIV (Q, 4, R, X, Y)
+# define FP_SQRT_Q(R, X) _FP_SQRT (Q, 4, R, X)
+# define _FP_SQRT_MEAT_Q(R, S, T, X, Q) _FP_SQRT_MEAT_4 (R, S, T, X, (Q))
+# define FP_FMA_Q(R, X, Y, Z) _FP_FMA (Q, 4, 8, R, X, Y, Z)
+
+# define FP_CMP_Q(r, X, Y, un, ex) _FP_CMP (Q, 4, (r), X, Y, (un), (ex))
+# define FP_CMP_EQ_Q(r, X, Y, ex) _FP_CMP_EQ (Q, 4, (r), X, Y, (ex))
+# define FP_CMP_UNORD_Q(r, X, Y, ex) _FP_CMP_UNORD (Q, 4, (r), X, Y, (ex))
+
+# define FP_TO_INT_Q(r, X, rsz, rsg) _FP_TO_INT (Q, 4, (r), X, (rsz), (rsg))
+# define FP_TO_INT_ROUND_Q(r, X, rsz, rsg) \
+ _FP_TO_INT_ROUND (Q, 4, (r), X, (rsz), (rsg))
+# define FP_FROM_INT_Q(X, r, rs, rt) _FP_FROM_INT (Q, 4, X, (r), (rs), rt)
+
+# define _FP_FRAC_HIGH_Q(X) _FP_FRAC_HIGH_4 (X)
+# define _FP_FRAC_HIGH_RAW_Q(X) _FP_FRAC_HIGH_4 (X)
+
+# define _FP_FRAC_HIGH_DW_Q(X) _FP_FRAC_HIGH_8 (X)
+
+#else /* not _FP_W_TYPE_SIZE < 64 */
+union _FP_UNION_Q
+{
+ TFtype flt /* __attribute__ ((mode (TF))) */ ;
+ struct _FP_STRUCT_LAYOUT
+ {
+ _FP_W_TYPE a, b;
+ } longs;
+ struct _FP_STRUCT_LAYOUT
+ {
+# if __BYTE_ORDER == __BIG_ENDIAN
+ unsigned sign : 1;
+ unsigned exp : _FP_EXPBITS_Q;
+ _FP_W_TYPE frac1 : _FP_FRACBITS_Q - (_FP_IMPLBIT_Q != 0) - _FP_W_TYPE_SIZE;
+ _FP_W_TYPE frac0 : _FP_W_TYPE_SIZE;
+# else
+ _FP_W_TYPE frac0 : _FP_W_TYPE_SIZE;
+ _FP_W_TYPE frac1 : _FP_FRACBITS_Q - (_FP_IMPLBIT_Q != 0) - _FP_W_TYPE_SIZE;
+ unsigned exp : _FP_EXPBITS_Q;
+ unsigned sign : 1;
+# endif
+ } bits;
+};
+
+# define FP_DECL_Q(X) _FP_DECL (2, X)
+# define FP_UNPACK_RAW_Q(X, val) _FP_UNPACK_RAW_2 (Q, X, (val))
+# define FP_UNPACK_RAW_QP(X, val) _FP_UNPACK_RAW_2_P (Q, X, (val))
+# define FP_PACK_RAW_Q(val, X) _FP_PACK_RAW_2 (Q, (val), X)
+# define FP_PACK_RAW_QP(val, X) \
+ do \
+ { \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_2_P (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_Q(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_2 (Q, X, (val)); \
+ _FP_UNPACK_CANONICAL (Q, 2, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_QP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_2_P (Q, X, (val)); \
+ _FP_UNPACK_CANONICAL (Q, 2, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_SEMIRAW_Q(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_2 (Q, X, (val)); \
+ _FP_UNPACK_SEMIRAW (Q, 2, X); \
+ } \
+ while (0)
+
+# define FP_UNPACK_SEMIRAW_QP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_2_P (Q, X, (val)); \
+ _FP_UNPACK_SEMIRAW (Q, 2, X); \
+ } \
+ while (0)
+
+# define FP_PACK_Q(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (Q, 2, X); \
+ _FP_PACK_RAW_2 (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_QP(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (Q, 2, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_2_P (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_SEMIRAW_Q(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (Q, 2, X); \
+ _FP_PACK_RAW_2 (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_PACK_SEMIRAW_QP(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (Q, 2, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_2_P (Q, (val), X); \
+ } \
+ while (0)
+
+# define FP_ISSIGNAN_Q(X) _FP_ISSIGNAN (Q, 2, X)
+# define FP_NEG_Q(R, X) _FP_NEG (Q, 2, R, X)
+# define FP_ADD_Q(R, X, Y) _FP_ADD (Q, 2, R, X, Y)
+# define FP_SUB_Q(R, X, Y) _FP_SUB (Q, 2, R, X, Y)
+# define FP_MUL_Q(R, X, Y) _FP_MUL (Q, 2, R, X, Y)
+# define FP_DIV_Q(R, X, Y) _FP_DIV (Q, 2, R, X, Y)
+# define FP_SQRT_Q(R, X) _FP_SQRT (Q, 2, R, X)
+# define _FP_SQRT_MEAT_Q(R, S, T, X, Q) _FP_SQRT_MEAT_2 (R, S, T, X, (Q))
+# define FP_FMA_Q(R, X, Y, Z) _FP_FMA (Q, 2, 4, R, X, Y, Z)
+
+# define FP_CMP_Q(r, X, Y, un, ex) _FP_CMP (Q, 2, (r), X, Y, (un), (ex))
+# define FP_CMP_EQ_Q(r, X, Y, ex) _FP_CMP_EQ (Q, 2, (r), X, Y, (ex))
+# define FP_CMP_UNORD_Q(r, X, Y, ex) _FP_CMP_UNORD (Q, 2, (r), X, Y, (ex))
+
+# define FP_TO_INT_Q(r, X, rsz, rsg) _FP_TO_INT (Q, 2, (r), X, (rsz), (rsg))
+# define FP_TO_INT_ROUND_Q(r, X, rsz, rsg) \
+ _FP_TO_INT_ROUND (Q, 2, (r), X, (rsz), (rsg))
+# define FP_FROM_INT_Q(X, r, rs, rt) _FP_FROM_INT (Q, 2, X, (r), (rs), rt)
+
+# define _FP_FRAC_HIGH_Q(X) _FP_FRAC_HIGH_2 (X)
+# define _FP_FRAC_HIGH_RAW_Q(X) _FP_FRAC_HIGH_2 (X)
+
+# define _FP_FRAC_HIGH_DW_Q(X) _FP_FRAC_HIGH_4 (X)
+
+#endif /* not _FP_W_TYPE_SIZE < 64 */
+
+#endif /* !SOFT_FP_QUAD_H */
new file mode 100644
@@ -0,0 +1,199 @@
+/* Software floating-point emulation.
+ Definitions for IEEE Single Precision.
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Richard Henderson (rth@cygnus.com),
+ Jakub Jelinek (jj@ultra.linux.cz),
+ David S. Miller (davem@redhat.com) and
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_SINGLE_H
+#define SOFT_FP_SINGLE_H 1
+
+#if _FP_W_TYPE_SIZE < 32
+# error "Here's a nickel kid. Go buy yourself a real computer."
+#endif
+
+#define _FP_FRACTBITS_S _FP_W_TYPE_SIZE
+
+#if _FP_W_TYPE_SIZE < 64
+# define _FP_FRACTBITS_DW_S (2 * _FP_W_TYPE_SIZE)
+#else
+# define _FP_FRACTBITS_DW_S _FP_W_TYPE_SIZE
+#endif
+
+#define _FP_FRACBITS_S 24
+#define _FP_FRACXBITS_S (_FP_FRACTBITS_S - _FP_FRACBITS_S)
+#define _FP_WFRACBITS_S (_FP_WORKBITS + _FP_FRACBITS_S)
+#define _FP_WFRACXBITS_S (_FP_FRACTBITS_S - _FP_WFRACBITS_S)
+#define _FP_EXPBITS_S 8
+#define _FP_EXPBIAS_S 127
+#define _FP_EXPMAX_S 255
+#define _FP_QNANBIT_S ((_FP_W_TYPE) 1 << (_FP_FRACBITS_S-2))
+#define _FP_QNANBIT_SH_S ((_FP_W_TYPE) 1 << (_FP_FRACBITS_S-2+_FP_WORKBITS))
+#define _FP_IMPLBIT_S ((_FP_W_TYPE) 1 << (_FP_FRACBITS_S-1))
+#define _FP_IMPLBIT_SH_S ((_FP_W_TYPE) 1 << (_FP_FRACBITS_S-1+_FP_WORKBITS))
+#define _FP_OVERFLOW_S ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_S))
+
+#define _FP_WFRACBITS_DW_S (2 * _FP_WFRACBITS_S)
+#define _FP_WFRACXBITS_DW_S (_FP_FRACTBITS_DW_S - _FP_WFRACBITS_DW_S)
+#define _FP_HIGHBIT_DW_S \
+ ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_S - 1) % _FP_W_TYPE_SIZE)
+
+/* The implementation of _FP_MUL_MEAT_S and _FP_DIV_MEAT_S should be
+ chosen by the target machine. */
+
+typedef float SFtype __attribute__ ((mode (SF)));
+
+union _FP_UNION_S
+{
+ SFtype flt;
+ struct _FP_STRUCT_LAYOUT
+ {
+#if __BYTE_ORDER == __BIG_ENDIAN
+ unsigned sign : 1;
+ unsigned exp : _FP_EXPBITS_S;
+ unsigned frac : _FP_FRACBITS_S - (_FP_IMPLBIT_S != 0);
+#else
+ unsigned frac : _FP_FRACBITS_S - (_FP_IMPLBIT_S != 0);
+ unsigned exp : _FP_EXPBITS_S;
+ unsigned sign : 1;
+#endif
+ } bits __attribute__ ((packed));
+};
+
+#define FP_DECL_S(X) _FP_DECL (1, X)
+#define FP_UNPACK_RAW_S(X, val) _FP_UNPACK_RAW_1 (S, X, (val))
+#define FP_UNPACK_RAW_SP(X, val) _FP_UNPACK_RAW_1_P (S, X, (val))
+#define FP_PACK_RAW_S(val, X) _FP_PACK_RAW_1 (S, (val), X)
+#define FP_PACK_RAW_SP(val, X) \
+ do \
+ { \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (S, (val), X); \
+ } \
+ while (0)
+
+#define FP_UNPACK_S(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1 (S, X, (val)); \
+ _FP_UNPACK_CANONICAL (S, 1, X); \
+ } \
+ while (0)
+
+#define FP_UNPACK_SP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1_P (S, X, (val)); \
+ _FP_UNPACK_CANONICAL (S, 1, X); \
+ } \
+ while (0)
+
+#define FP_UNPACK_SEMIRAW_S(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1 (S, X, (val)); \
+ _FP_UNPACK_SEMIRAW (S, 1, X); \
+ } \
+ while (0)
+
+#define FP_UNPACK_SEMIRAW_SP(X, val) \
+ do \
+ { \
+ _FP_UNPACK_RAW_1_P (S, X, (val)); \
+ _FP_UNPACK_SEMIRAW (S, 1, X); \
+ } \
+ while (0)
+
+#define FP_PACK_S(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (S, 1, X); \
+ _FP_PACK_RAW_1 (S, (val), X); \
+ } \
+ while (0)
+
+#define FP_PACK_SP(val, X) \
+ do \
+ { \
+ _FP_PACK_CANONICAL (S, 1, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (S, (val), X); \
+ } \
+ while (0)
+
+#define FP_PACK_SEMIRAW_S(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (S, 1, X); \
+ _FP_PACK_RAW_1 (S, (val), X); \
+ } \
+ while (0)
+
+#define FP_PACK_SEMIRAW_SP(val, X) \
+ do \
+ { \
+ _FP_PACK_SEMIRAW (S, 1, X); \
+ if (!FP_INHIBIT_RESULTS) \
+ _FP_PACK_RAW_1_P (S, (val), X); \
+ } \
+ while (0)
+
+#define FP_ISSIGNAN_S(X) _FP_ISSIGNAN (S, 1, X)
+#define FP_NEG_S(R, X) _FP_NEG (S, 1, R, X)
+#define FP_ADD_S(R, X, Y) _FP_ADD (S, 1, R, X, Y)
+#define FP_SUB_S(R, X, Y) _FP_SUB (S, 1, R, X, Y)
+#define FP_MUL_S(R, X, Y) _FP_MUL (S, 1, R, X, Y)
+#define FP_DIV_S(R, X, Y) _FP_DIV (S, 1, R, X, Y)
+#define FP_SQRT_S(R, X) _FP_SQRT (S, 1, R, X)
+#define _FP_SQRT_MEAT_S(R, S, T, X, Q) _FP_SQRT_MEAT_1 (R, S, T, X, (Q))
+
+#if _FP_W_TYPE_SIZE < 64
+# define FP_FMA_S(R, X, Y, Z) _FP_FMA (S, 1, 2, R, X, Y, Z)
+#else
+# define FP_FMA_S(R, X, Y, Z) _FP_FMA (S, 1, 1, R, X, Y, Z)
+#endif
+
+#define FP_CMP_S(r, X, Y, un, ex) _FP_CMP (S, 1, (r), X, Y, (un), (ex))
+#define FP_CMP_EQ_S(r, X, Y, ex) _FP_CMP_EQ (S, 1, (r), X, Y, (ex))
+#define FP_CMP_UNORD_S(r, X, Y, ex) _FP_CMP_UNORD (S, 1, (r), X, Y, (ex))
+
+#define FP_TO_INT_S(r, X, rsz, rsg) _FP_TO_INT (S, 1, (r), X, (rsz), (rsg))
+#define FP_TO_INT_ROUND_S(r, X, rsz, rsg) \
+ _FP_TO_INT_ROUND (S, 1, (r), X, (rsz), (rsg))
+#define FP_FROM_INT_S(X, r, rs, rt) _FP_FROM_INT (S, 1, X, (r), (rs), rt)
+
+#define _FP_FRAC_HIGH_S(X) _FP_FRAC_HIGH_1 (X)
+#define _FP_FRAC_HIGH_RAW_S(X) _FP_FRAC_HIGH_1 (X)
+
+#if _FP_W_TYPE_SIZE < 64
+# define _FP_FRAC_HIGH_DW_S(X) _FP_FRAC_HIGH_2 (X)
+#else
+# define _FP_FRAC_HIGH_DW_S(X) _FP_FRAC_HIGH_1 (X)
+#endif
+
+#endif /* !SOFT_FP_SINGLE_H */
new file mode 100644
@@ -0,0 +1,354 @@
+/* Software floating-point emulation.
+ Copyright (C) 1997-2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Richard Henderson (rth@cygnus.com),
+ Jakub Jelinek (jj@ultra.linux.cz),
+ David S. Miller (davem@redhat.com) and
+ Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ In addition to the permissions in the GNU Lesser General Public
+ License, the Free Software Foundation gives you unlimited
+ permission to link the compiled version of this file into
+ combinations with other programs, and to distribute those
+ combinations without any restriction coming from the use of this
+ file. (The Lesser General Public License restrictions do apply in
+ other respects; for example, they cover modification of the file,
+ and distribution when not linked into a combine executable.)
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#ifndef SOFT_FP_H
+#define SOFT_FP_H 1
+
+#ifdef _LIBC
+# include <sfp-machine.h>
+#elif defined __KERNEL__
+/* The Linux kernel uses asm/ names for architecture-specific
+ files. */
+# include <asm/sfp-machine.h>
+#else
+# include "sfp-machine.h"
+#endif
+
+/* Allow sfp-machine to have its own byte order definitions. */
+#ifndef __BYTE_ORDER
+# ifdef _LIBC
+# include <endian.h>
+# else
+# error "endianness not defined by sfp-machine.h"
+# endif
+#endif
+
+/* For unreachable default cases in switch statements over bitwise OR
+ of FP_CLS_* values. */
+#if (defined __GNUC__ \
+ && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)))
+# define _FP_UNREACHABLE __builtin_unreachable ()
+#else
+# define _FP_UNREACHABLE abort ()
+#endif
+
+#if ((defined __GNUC__ \
+ && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) \
+ || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 201112L))
+# define _FP_STATIC_ASSERT(expr, msg) \
+ _Static_assert ((expr), msg)
+#else
+# define _FP_STATIC_ASSERT(expr, msg) \
+ extern int (*__Static_assert_function (void)) \
+ [!!sizeof (struct { int __error_if_negative: (expr) ? 2 : -1; })]
+#endif
+
+/* In the Linux kernel, some architectures have a single function that
+ uses different kinds of unpacking and packing depending on the
+ instruction being emulated, meaning it is not readily visible to
+ the compiler that variables from _FP_DECL and _FP_FRAC_DECL_*
+ macros are only used in cases where they were initialized. */
+#ifdef __KERNEL__
+# define _FP_ZERO_INIT = 0
+#else
+# define _FP_ZERO_INIT
+#endif
+
+#define _FP_WORKBITS 3
+#define _FP_WORK_LSB ((_FP_W_TYPE) 1 << 3)
+#define _FP_WORK_ROUND ((_FP_W_TYPE) 1 << 2)
+#define _FP_WORK_GUARD ((_FP_W_TYPE) 1 << 1)
+#define _FP_WORK_STICKY ((_FP_W_TYPE) 1 << 0)
+
+#ifndef FP_RND_NEAREST
+# define FP_RND_NEAREST 0
+# define FP_RND_ZERO 1
+# define FP_RND_PINF 2
+# define FP_RND_MINF 3
+#endif
+#ifndef FP_ROUNDMODE
+# define FP_ROUNDMODE FP_RND_NEAREST
+#endif
+
+/* By default don't care about exceptions. */
+#ifndef FP_EX_INVALID
+# define FP_EX_INVALID 0
+#endif
+#ifndef FP_EX_OVERFLOW
+# define FP_EX_OVERFLOW 0
+#endif
+#ifndef FP_EX_UNDERFLOW
+# define FP_EX_UNDERFLOW 0
+#endif
+#ifndef FP_EX_DIVZERO
+# define FP_EX_DIVZERO 0
+#endif
+#ifndef FP_EX_INEXACT
+# define FP_EX_INEXACT 0
+#endif
+#ifndef FP_EX_DENORM
+# define FP_EX_DENORM 0
+#endif
+
+/* Sub-exceptions of "invalid". */
+/* Signaling NaN operand. */
+#ifndef FP_EX_INVALID_SNAN
+# define FP_EX_INVALID_SNAN 0
+#endif
+/* Inf * 0. */
+#ifndef FP_EX_INVALID_IMZ
+# define FP_EX_INVALID_IMZ 0
+#endif
+/* fma (Inf, 0, c). */
+#ifndef FP_EX_INVALID_IMZ_FMA
+# define FP_EX_INVALID_IMZ_FMA 0
+#endif
+/* Inf - Inf. */
+#ifndef FP_EX_INVALID_ISI
+# define FP_EX_INVALID_ISI 0
+#endif
+/* 0 / 0. */
+#ifndef FP_EX_INVALID_ZDZ
+# define FP_EX_INVALID_ZDZ 0
+#endif
+/* Inf / Inf. */
+#ifndef FP_EX_INVALID_IDI
+# define FP_EX_INVALID_IDI 0
+#endif
+/* sqrt (negative). */
+#ifndef FP_EX_INVALID_SQRT
+# define FP_EX_INVALID_SQRT 0
+#endif
+/* Invalid conversion to integer. */
+#ifndef FP_EX_INVALID_CVI
+# define FP_EX_INVALID_CVI 0
+#endif
+/* Invalid comparison. */
+#ifndef FP_EX_INVALID_VC
+# define FP_EX_INVALID_VC 0
+#endif
+
+/* _FP_STRUCT_LAYOUT may be defined as an attribute to determine the
+ struct layout variant used for structures where bit-fields are used
+ to access specific parts of binary floating-point numbers. This is
+ required for systems where the default ABI uses struct layout with
+ differences in how consecutive bit-fields are laid out from the
+ default expected by soft-fp. */
+#ifndef _FP_STRUCT_LAYOUT
+# define _FP_STRUCT_LAYOUT
+#endif
+
+#ifdef _FP_DECL_EX
+# define FP_DECL_EX \
+ int _fex = 0; \
+ _FP_DECL_EX
+#else
+# define FP_DECL_EX int _fex = 0
+#endif
+
+/* Initialize any machine-specific state used in FP_ROUNDMODE,
+ FP_TRAPPING_EXCEPTIONS or FP_HANDLE_EXCEPTIONS. */
+#ifndef FP_INIT_ROUNDMODE
+# define FP_INIT_ROUNDMODE do {} while (0)
+#endif
+
+/* Initialize any machine-specific state used in
+ FP_TRAPPING_EXCEPTIONS or FP_HANDLE_EXCEPTIONS. */
+#ifndef FP_INIT_TRAPPING_EXCEPTIONS
+# define FP_INIT_TRAPPING_EXCEPTIONS FP_INIT_ROUNDMODE
+#endif
+
+/* Initialize any machine-specific state used in
+ FP_HANDLE_EXCEPTIONS. */
+#ifndef FP_INIT_EXCEPTIONS
+# define FP_INIT_EXCEPTIONS FP_INIT_TRAPPING_EXCEPTIONS
+#endif
+
+#ifndef FP_HANDLE_EXCEPTIONS
+# define FP_HANDLE_EXCEPTIONS do {} while (0)
+#endif
+
+/* Whether to flush subnormal inputs to zero with the same sign. */
+#ifndef FP_DENORM_ZERO
+# define FP_DENORM_ZERO 0
+#endif
+
+#ifndef FP_INHIBIT_RESULTS
+/* By default we write the results always.
+ sfp-machine may override this and e.g.
+ check if some exceptions are unmasked
+ and inhibit it in such a case. */
+# define FP_INHIBIT_RESULTS 0
+#endif
+
+#define FP_SET_EXCEPTION(ex) \
+ _fex |= (ex)
+
+#define FP_CUR_EXCEPTIONS \
+ (_fex)
+
+#ifndef FP_TRAPPING_EXCEPTIONS
+# define FP_TRAPPING_EXCEPTIONS 0
+#endif
+
+/* A file using soft-fp may define FP_NO_EXCEPTIONS before including
+ soft-fp.h to indicate that, although a macro used there could raise
+ exceptions, or do rounding and potentially thereby raise
+ exceptions, for some arguments, for the particular arguments used
+ in that file no exceptions or rounding can occur. Such a file
+ should not itself use macros relating to handling exceptions and
+ rounding modes; this is only for indirect uses (in particular, in
+ _FP_FROM_INT and the macros it calls). */
+#ifdef FP_NO_EXCEPTIONS
+
+# undef FP_SET_EXCEPTION
+# define FP_SET_EXCEPTION(ex) do {} while (0)
+
+# undef FP_CUR_EXCEPTIONS
+# define FP_CUR_EXCEPTIONS 0
+
+# undef FP_TRAPPING_EXCEPTIONS
+# define FP_TRAPPING_EXCEPTIONS 0
+
+# undef FP_ROUNDMODE
+# define FP_ROUNDMODE FP_RND_ZERO
+
+# undef _FP_TININESS_AFTER_ROUNDING
+# define _FP_TININESS_AFTER_ROUNDING 0
+
+#endif
+
+/* A file using soft-fp may define FP_NO_EXACT_UNDERFLOW before
+ including soft-fp.h to indicate that, although a macro used there
+ could allow for the case of exact underflow requiring the underflow
+ exception to be raised if traps are enabled, for the particular
+ arguments used in that file no exact underflow can occur. */
+#ifdef FP_NO_EXACT_UNDERFLOW
+# undef FP_TRAPPING_EXCEPTIONS
+# define FP_TRAPPING_EXCEPTIONS 0
+#endif
+
+#define _FP_ROUND_NEAREST(wc, X) \
+ do \
+ { \
+ if ((_FP_FRAC_LOW_##wc (X) & 15) != _FP_WORK_ROUND) \
+ _FP_FRAC_ADDI_##wc (X, _FP_WORK_ROUND); \
+ } \
+ while (0)
+
+#define _FP_ROUND_ZERO(wc, X) (void) 0
+
+#define _FP_ROUND_PINF(wc, X) \
+ do \
+ { \
+ if (!X##_s && (_FP_FRAC_LOW_##wc (X) & 7)) \
+ _FP_FRAC_ADDI_##wc (X, _FP_WORK_LSB); \
+ } \
+ while (0)
+
+#define _FP_ROUND_MINF(wc, X) \
+ do \
+ { \
+ if (X##_s && (_FP_FRAC_LOW_##wc (X) & 7)) \
+ _FP_FRAC_ADDI_##wc (X, _FP_WORK_LSB); \
+ } \
+ while (0)
+
+#define _FP_ROUND(wc, X) \
+ do \
+ { \
+ if (_FP_FRAC_LOW_##wc (X) & 7) \
+ { \
+ FP_SET_EXCEPTION (FP_EX_INEXACT); \
+ switch (FP_ROUNDMODE) \
+ { \
+ case FP_RND_NEAREST: \
+ _FP_ROUND_NEAREST (wc, X); \
+ break; \
+ case FP_RND_ZERO: \
+ _FP_ROUND_ZERO (wc, X); \
+ break; \
+ case FP_RND_PINF: \
+ _FP_ROUND_PINF (wc, X); \
+ break; \
+ case FP_RND_MINF: \
+ _FP_ROUND_MINF (wc, X); \
+ break; \
+ } \
+ } \
+ } \
+ while (0)
+
+#define FP_CLS_NORMAL 0
+#define FP_CLS_ZERO 1
+#define FP_CLS_INF 2
+#define FP_CLS_NAN 3
+
+#define _FP_CLS_COMBINE(x, y) (((x) << 2) | (y))
+
+#include "op-1.h"
+#include "op-2.h"
+#include "op-4.h"
+#include "op-8.h"
+#include "op-common.h"
+
+/* Sigh. Silly things longlong.h needs. */
+#define UWtype _FP_W_TYPE
+#define W_TYPE_SIZE _FP_W_TYPE_SIZE
+
+typedef int QItype __attribute__ ((mode (QI)));
+typedef int SItype __attribute__ ((mode (SI)));
+typedef int DItype __attribute__ ((mode (DI)));
+typedef unsigned int UQItype __attribute__ ((mode (QI)));
+typedef unsigned int USItype __attribute__ ((mode (SI)));
+typedef unsigned int UDItype __attribute__ ((mode (DI)));
+#if _FP_W_TYPE_SIZE == 32
+typedef unsigned int UHWtype __attribute__ ((mode (HI)));
+#elif _FP_W_TYPE_SIZE == 64
+typedef USItype UHWtype;
+#endif
+
+#ifndef CMPtype
+# define CMPtype int
+#endif
+
+#define SI_BITS (__CHAR_BIT__ * (int) sizeof (SItype))
+#define DI_BITS (__CHAR_BIT__ * (int) sizeof (DItype))
+
+#ifndef umul_ppmm
+# ifdef _LIBC
+# include <stdlib/longlong.h>
+# else
+# include "longlong.h"
+# endif
+#endif
+
+#endif /* !SOFT_FP_H */
This has support for 16, 32, 64, and 128-bit floats. Upstream has some support for floatx80, but it is specific to Intel and has not been updated for Motorola differences. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> --- fpu/double.h | 323 +++++++++ fpu/half.h | 170 +++++ fpu/op-1.h | 369 ++++++++++ fpu/op-2.h | 705 ++++++++++++++++++ fpu/op-4.h | 875 +++++++++++++++++++++++ fpu/op-8.h | 1 + fpu/op-common.h | 2134 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ fpu/quad.h | 330 +++++++++ fpu/single.h | 199 ++++++ fpu/soft-fp.h | 354 +++++++++ 10 files changed, 5460 insertions(+) create mode 100644 fpu/double.h create mode 100644 fpu/half.h create mode 100644 fpu/op-1.h create mode 100644 fpu/op-2.h create mode 100644 fpu/op-4.h create mode 100644 fpu/op-8.h create mode 100644 fpu/op-common.h create mode 100644 fpu/quad.h create mode 100644 fpu/single.h create mode 100644 fpu/soft-fp.h -- 2.14.3