From patchwork Tue Jul 24 06:32:17 2018 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Ming Huang X-Patchwork-Id: 142682 Delivered-To: patch@linaro.org Received: by 2002:a2e:9754:0:0:0:0:0 with SMTP id f20-v6csp6899203ljj; Mon, 23 Jul 2018 23:33:03 -0700 (PDT) X-Google-Smtp-Source: AAOMgpfC00D1mrAUAdJDotu7ZUSkEtYZZovVy9oTBNS92ATDVVhs0o5TEFX9kaBIeEWU1Cop0hGu X-Received: by 2002:a17:902:8f86:: with SMTP id z6-v6mr15796554plo.38.1532413983588; Mon, 23 Jul 2018 23:33:03 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1532413983; cv=none; d=google.com; s=arc-20160816; b=YZt6M9PP5PuS4R9aap53B7FQMYw7aIXkH8+l/yv0zCOvb2G+cUvzpqDm43myMv7Cyf UlCVIv3iAI56NXV+9vBdtA1JSZp/0XlfwdcAeW7kL26HV9BeReK9alVZnSn2p/z4qC46 0e80h/lNrr2bL036umyUHvRWHesCh2eN+xHAuqj+BzSU1nyuCvQig1y2ekySaMfGxGqg DKYBRYoahm1E54XcaRkYZrsETsPD0RLkqBAIru8SvDVJR72KJII4eH5+t7Mt9fbvz5dQ hD7usxWQhxhX0sCNXUtIYEBZdSleOiW3Qur2cVM/L+DUBCIZNiWLaxdEebYfEMNrq374 UQNw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=sender:errors-to:content-transfer-encoding:mime-version:cc :list-subscribe:list-help:list-post:list-archive:list-unsubscribe :list-id:precedence:subject:references:in-reply-to:message-id:date :to:from:dkim-signature:delivered-to:arc-authentication-results; bh=lLhzBZMKrm4GhJpEkhREa4sjlK5DXlFlrCdFPXo9/fU=; b=0JfAjyoNTngVMpFdLTOqgApy3n7F4pAwHn0EDaOcYiaUo21jbBLdZ5N70V8v6k46yn I0J0+YnrvR/RgE6Iud3gBSIixbOXMkCXAP1YCdFevyqurmVzOzmzCVd5dR++Mrfob0SO 4CXli99kWEy8WRG4h9IuRWhgYteBIBnpbSQ21HCYEpcEp+5sSMTvz1NLXCdaXdNVIexL xvQXfOUcTTeZfD6M4IoqHUXPrIGuz7lZoV1J0BNVbDrUtpyZM0uyq3Z5AaF/jKE5dpR9 VPR4ak8vFo7hfZACk964VJs2dnq8CyntZoucwF2Qr8U5tWYxwpQ6eg1cRhibGBMDETW/ zE0A== ARC-Authentication-Results: i=1; mx.google.com; dkim=neutral (body hash did not verify) header.i=@linaro.org header.s=google header.b=ZCMRAaEW; spf=pass (google.com: best guess record for domain of edk2-devel-bounces@lists.01.org designates 2001:19d0:306:5::1 as permitted sender) smtp.mailfrom=edk2-devel-bounces@lists.01.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=linaro.org Return-Path: Received: from ml01.01.org (ml01.01.org. [2001:19d0:306:5::1]) by mx.google.com with ESMTPS id b6-v6si10368925pla.124.2018.07.23.23.33.03 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Mon, 23 Jul 2018 23:33:03 -0700 (PDT) Received-SPF: pass (google.com: best guess record for domain of edk2-devel-bounces@lists.01.org designates 2001:19d0:306:5::1 as permitted sender) client-ip=2001:19d0:306:5::1; Authentication-Results: mx.google.com; dkim=neutral (body hash did not verify) header.i=@linaro.org header.s=google header.b=ZCMRAaEW; spf=pass (google.com: best guess record for domain of edk2-devel-bounces@lists.01.org designates 2001:19d0:306:5::1 as permitted sender) smtp.mailfrom=edk2-devel-bounces@lists.01.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=linaro.org Received: from [127.0.0.1] (localhost [IPv6:::1]) by ml01.01.org (Postfix) with ESMTP id 6F4CF210C1244; Mon, 23 Jul 2018 23:33:01 -0700 (PDT) X-Original-To: edk2-devel@lists.01.org Delivered-To: edk2-devel@lists.01.org Received-SPF: Pass (sender SPF authorized) identity=mailfrom; client-ip=2607:f8b0:400e:c01::230; helo=mail-pl0-x230.google.com; envelope-from=ming.huang@linaro.org; receiver=edk2-devel@lists.01.org Received: from mail-pl0-x230.google.com (mail-pl0-x230.google.com [IPv6:2607:f8b0:400e:c01::230]) (using TLSv1.2 with cipher ECDHE-RSA-AES128-GCM-SHA256 (128/128 bits)) (No client certificate requested) by ml01.01.org (Postfix) with ESMTPS id 4F717210C1231 for ; Mon, 23 Jul 2018 23:33:00 -0700 (PDT) Received: by mail-pl0-x230.google.com with SMTP id z7-v6so1295357plo.9 for ; Mon, 23 Jul 2018 23:33:00 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=linaro.org; s=google; h=from:to:cc:subject:date:message-id:in-reply-to:references; bh=ZINAxDBNji5sVIBuUqQ/R/+t7S8frAqadWY2c3tYIn0=; b=ZCMRAaEWFQq9uk0WoWzSYvEnA81/fUM87UIu8BfEZ/XygrOGAzkjtmw/71ypaY/V2c mGGyeHYr6Ug9jgHJBDpSTzyilyApCf/Nr97ESPdm86oZxn0Xb2ucjPK9VEdovozfcb2i zI0NWTu/ngZnm7ZUpi9IwheabXreAHjo2n7ko= X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:to:cc:subject:date:message-id:in-reply-to :references; bh=ZINAxDBNji5sVIBuUqQ/R/+t7S8frAqadWY2c3tYIn0=; b=jZ+hecymGQHVJqe1WoV9PNAPkBKtfnoZHOdjCNCRGoNy5wTlAwRggwJRSUN6qJXBlK ZdrJeAhubu/k5nfA7hsNF3iiEDMHB0dp8hQquykBH1368mP5Qzg8GaiQx5ibfIZklL9q TeG1E8IHqLX9J/VV/cKmBlEIDPvUwGuMyKQo5i5X/98EkiAGffU5s6kUkHH4psrPHgVX rLy8AByAKD2EgxRwiiyewW6dZ3+/8/eRs2a8pyeeNKlsyn7p59dA4w9hckY9IpEBQZhj pEcTIIOP+WzDz3Y8gs0ekCZAVGNaHjVUzlwd8C5jVw4q0QkTXBh+ld+VNaX8uqJCX65B oRAg== X-Gm-Message-State: AOUpUlHPD9NB5clZPF1LsYDAm1/xlrYPo1+TEIAJEnRIoRIKTZWIP+EX Zm+klJWHoazyvGcUkw9mIoGHdg== X-Received: by 2002:a17:902:6b86:: with SMTP id p6-v6mr15761517plk.75.1532413979677; Mon, 23 Jul 2018 23:32:59 -0700 (PDT) Received: from localhost.localdomain ([120.31.149.194]) by smtp.gmail.com with ESMTPSA id e2-v6sm12086575pgo.92.2018.07.23.23.32.56 (version=TLS1_2 cipher=ECDHE-RSA-AES128-SHA bits=128/128); Mon, 23 Jul 2018 23:32:59 -0700 (PDT) From: Ming Huang To: leif.lindholm@linaro.org, linaro-uefi@lists.linaro.org, edk2-devel@lists.01.org, graeme.gregory@linaro.org Date: Tue, 24 Jul 2018 14:32:17 +0800 Message-Id: <20180724063220.61679-10-ming.huang@linaro.org> X-Mailer: git-send-email 2.17.0 In-Reply-To: <20180724063220.61679-1-ming.huang@linaro.org> References: <20180724063220.61679-1-ming.huang@linaro.org> Subject: [edk2] [PATCH edk2-platforms v2 09/12] Hisilicon: add PciSegmentLib for Hi161x X-BeenThere: edk2-devel@lists.01.org X-Mailman-Version: 2.1.27 Precedence: list List-Id: EDK II Development List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Cc: huangming23@huawei.com, xinliang.liu@linaro.org, john.garry@huawei.com, zhangjinsong2@huawei.com, Michael D Kinney , huangdaode@hisilicon.com, guoheyi@huawei.com, wanghuiqiang@huawei.com MIME-Version: 1.0 Errors-To: edk2-devel-bounces@lists.01.org Sender: "edk2-devel" From: Heyi Guo This is to prepare for switching to generic PciHostBridge, and PciSegmentLib is needed by generic PciHostBridge driver. This module copied from edk2-platforms/Silicon/Socionext/SynQuacer/Library/SynQuacerPciSegmentLib. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Heyi Guo Cc: Ard Biesheuvel Cc: Leif Lindholm Cc: Michael D Kinney --- Silicon/Hisilicon/Hi1610/Library/Hi161xPciSegmentLib/Hi161xPciSegmentLib.inf | 36 + Silicon/Hisilicon/Hi1610/Library/Hi161xPciSegmentLib/PciSegmentLib.c | 1503 ++++++++++++++++++++ 2 files changed, 1539 insertions(+) -- 2.17.0 _______________________________________________ edk2-devel mailing list edk2-devel@lists.01.org https://lists.01.org/mailman/listinfo/edk2-devel diff --git a/Silicon/Hisilicon/Hi1610/Library/Hi161xPciSegmentLib/Hi161xPciSegmentLib.inf b/Silicon/Hisilicon/Hi1610/Library/Hi161xPciSegmentLib/Hi161xPciSegmentLib.inf new file mode 100644 index 0000000000..cd2ae88102 --- /dev/null +++ b/Silicon/Hisilicon/Hi1610/Library/Hi161xPciSegmentLib/Hi161xPciSegmentLib.inf @@ -0,0 +1,36 @@ +## @file +# PCI Segment Library for Hisilicon Hi1610/Hi1616 SoC with multiple RCs +# +# Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.
+# Copyright (c) 2017 - 2018, Linaro Ltd. All rights reserved.
+# Copyright (c) 2018, Hisilicon Ltd. All rights reserved.
+# +# This program and the accompanying materials +# are licensed and made available under the terms and conditions of the BSD License +# which accompanies this distribution. The full text of the license may be found at +# http://opensource.org/licenses/bsd-license.php. +# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. +# +# +## + +[Defines] + INF_VERSION = 0x0001001A + BASE_NAME = Hi161xPciSegmentLib + FILE_GUID = 22447df4-0baa-11e8-b6de-286ed489ee9b + MODULE_TYPE = BASE + VERSION_STRING = 1.0 + LIBRARY_CLASS = PciSegmentLib + +[Sources] + PciSegmentLib.c + +[Packages] + MdePkg/MdePkg.dec + Silicon/Hisilicon/HisiPkg.dec + +[LibraryClasses] + BaseLib + DebugLib + IoLib diff --git a/Silicon/Hisilicon/Hi1610/Library/Hi161xPciSegmentLib/PciSegmentLib.c b/Silicon/Hisilicon/Hi1610/Library/Hi161xPciSegmentLib/PciSegmentLib.c new file mode 100644 index 0000000000..2e66244a47 --- /dev/null +++ b/Silicon/Hisilicon/Hi1610/Library/Hi161xPciSegmentLib/PciSegmentLib.c @@ -0,0 +1,1503 @@ +/** @file + PCI Segment Library for SynQuacer SoC with multiple RCs + + Copyright (c) 2007 - 2012, Intel Corporation. All rights reserved.
+ Copyright (c) 2017, Linaro, Ltd. All rights reserved.
+ + This program and the accompanying materials are + licensed and made available under the terms and conditions of + the BSD License which accompanies this distribution. The full + text of the license may be found at + http://opensource.org/licenses/bsd-license.php. + + THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, + WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + +**/ + +#include + +#include +#include +#include +#include +#include + +typedef enum { + PciCfgWidthUint8 = 0, + PciCfgWidthUint16, + PciCfgWidthUint32, + PciCfgWidthMax +} PCI_CFG_WIDTH; + +/** + Assert the validity of a PCI Segment address. + A valid PCI Segment address should not contain 1's in bits 28..31 and 48..63 + + @param A The address to validate. + @param M Additional bits to assert to be zero. + +**/ +#define ASSERT_INVALID_PCI_SEGMENT_ADDRESS(A,M) \ + ASSERT (((A) & (0xffff0000f0000000ULL | (M))) == 0) + +#define EXTRACT_PCIE_ADDRESS(Address, Segment, Bus, Device, Function, Register) \ +{ \ + (Segment) = (RShiftU64 (Address, 32) & 0xffff); \ + (Bus) = (((Address) >> 20) & 0xff); \ + (Device) = (((Address) >> 15) & 0x1f); \ + (Function) = (((Address) >> 12) & 0x07); \ + (Register) = ((Address) & 0xfff); \ +} + +STATIC +PCI_ROOT_BRIDGE_RESOURCE_APPETURE * +PciSegmentLibGetAppeture ( + IN UINT32 Segment + ) +{ + UINTN Hb; + UINTN Rb; + + for (Hb = 0; Hb < PCIE_MAX_HOSTBRIDGE; Hb++) { + for (Rb = 0; Rb < PCIE_MAX_ROOTBRIDGE; Rb++) { + if (Segment == mResAppeture[Hb][Rb].Segment) { + return &mResAppeture[Hb][Rb]; + } + } + } + + // Shouldn't reach here + ASSERT (FALSE); + return NULL; +} + +BOOLEAN PcieIsLinkUp (UINTN RbPciBar) +{ + UINT32 Value; + + Value = MmioRead32(RbPciBar + 0x131C); + if ((Value & 0x3F) == 0x11) { + return TRUE; + } + return FALSE; +} + + +STATIC +UINT32 +CpuMemoryServiceRead ( + IN UINT64 Address, + IN PCI_CFG_WIDTH Width + ) +{ + + UINT32 Uint32Buffer; + + // + // Select loop based on the width of the transfer + // + if (Width == PciCfgWidthUint8) { + Uint32Buffer = MmioRead32((UINTN)(Address & (~0x3))); + return BitFieldRead32 (Uint32Buffer, (Address & 0x3) * 8, (Address & 0x3) * 8 + 7); + } else if (Width == PciCfgWidthUint16) { + if (((Address & 0x3) == 1) || ((Address & 0x3) == 3)) { + return 0xffff; + } + Uint32Buffer = MmioRead32((UINTN)(Address & (~0x3))); + return BitFieldRead32 (Uint32Buffer, (Address & 0x3) * 8, (Address & 0x3) * 8 + 15); + } else if (Width == PciCfgWidthUint32) { + return MmioRead32 ((UINTN)Address); + } else { + return 0xffffffff; + } +} + +STATIC +UINT32 +CpuMemoryServiceWrite ( + IN UINT64 Address, + IN PCI_CFG_WIDTH Width, + IN UINT32 Data + ) +{ + + UINT32 Uint32Buffer; + + // + // Select loop based on the width of the transfer + // + if (Width == PciCfgWidthUint8) { + Uint32Buffer = MmioRead32((UINTN)(Address & (~0x3))); + Uint32Buffer = BitFieldWrite32 (Uint32Buffer, (Address & 0x3) * 8, (Address & 0x3) * 8 + 7, Data); + MmioWrite32 ((UINTN)(Address & (~0x3)), Uint32Buffer); + } else if (Width == PciCfgWidthUint16) { + if (((Address & 0x3) == 1) || ((Address & 0x3) == 3)) { + return 0xffffffff; + } + Uint32Buffer = MmioRead32((UINTN)(Address & (~0x3))); + Uint32Buffer = BitFieldWrite32 (Uint32Buffer, (Address & 0x3) * 8, (Address & 0x3) * 8 + 15, Data); + MmioWrite32 ((UINTN)(Address & (~0x3)), Uint32Buffer); + } else if (Width == PciCfgWidthUint32) { + MmioWrite32 ((UINTN)Address, Data); + } else { + return 0xffffffff; + } + return Data; +} +/** + Internal worker function to read a PCI configuration register. + + @param Address The address that encodes the PCI Bus, Device, Function and + Register. + @param Width The width of data to read + + @return The value read from the PCI configuration register. + +**/ +STATIC +UINT32 +PciSegmentLibReadWorker ( + IN UINT64 Address, + IN PCI_CFG_WIDTH Width + ) +{ + PCI_ROOT_BRIDGE_RESOURCE_APPETURE *Appeture; + UINT32 Segment; + UINT8 Bus; + UINT8 Device; + UINT8 Function; + UINT32 Register; + + UINT64 MmioAddress; + + EXTRACT_PCIE_ADDRESS (Address, Segment, Bus, Device, Function, Register); + Appeture = PciSegmentLibGetAppeture (Segment); + if (Appeture == NULL) { + return 0xffffffff; + } + + if (Bus == Appeture->BusBase) { + // ignore device > 0 or function > 0 on base bus + if (Device != 0 || Function != 0) { + return 0xffffffff; + } + MmioAddress = Appeture->RbPciBar + Register; + } else { + // Cannot read from device under root port when link is not up + if (Bus == Appeture->BusBase + 1 && !PcieIsLinkUp (Appeture->RbPciBar)) { + return 0xffffffff; + } + + MmioAddress = Appeture->Ecam + (UINT32)Address; + } + + return CpuMemoryServiceRead (MmioAddress, Width); +} + +/** + Internal worker function to writes a PCI configuration register. + + @param Address The address that encodes the PCI Bus, Device, Function and + Register. + @param Width The width of data to write + @param Data The value to write. + + @return The value written to the PCI configuration register. + +**/ +STATIC +UINT32 +PciSegmentLibWriteWorker ( + IN UINT64 Address, + IN PCI_CFG_WIDTH Width, + IN UINT32 Data + ) +{ + PCI_ROOT_BRIDGE_RESOURCE_APPETURE *Appeture; + UINT32 Segment; + UINT8 Bus; + UINT8 Device; + UINT8 Function; + UINT32 Register; + + UINT64 MmioAddress; + + EXTRACT_PCIE_ADDRESS (Address, Segment, Bus, Device, Function, Register); + Appeture = PciSegmentLibGetAppeture (Segment); + if (Appeture == NULL) { + return 0xffffffff; + } + + if (Bus == Appeture->BusBase) { + // ignore device > 0 or function > 0 on base bus + if (Device != 0 || Function != 0) { + return Data; + } + // Ignore writing to root port BAR registers, in case we get wrong BAR length + if ((Register & ~0x3) == 0x14 || (Register & ~0x3) == 0x10) { + return Data; + } + MmioAddress = Appeture->RbPciBar + Register; + } else { + // Cannot read from device under root port when link is not up + if (Bus == Appeture->BusBase + 1 && !PcieIsLinkUp (Appeture->RbPciBar)) { + return 0xffffffff; + } + MmioAddress = Appeture->Ecam + (UINT32)Address; + } + + return CpuMemoryServiceWrite (MmioAddress, Width, Data); +} + +/** + Register a PCI device so PCI configuration registers may be accessed after + SetVirtualAddressMap(). + + If any reserved bits in Address are set, then ASSERT(). + + @param Address The address that encodes the PCI Bus, Device, Function and + Register. + + @retval RETURN_SUCCESS The PCI device was registered for runtime access. + @retval RETURN_UNSUPPORTED An attempt was made to call this function + after ExitBootServices(). + @retval RETURN_UNSUPPORTED The resources required to access the PCI device + at runtime could not be mapped. + @retval RETURN_OUT_OF_RESOURCES There are not enough resources available to + complete the registration. + +**/ +RETURN_STATUS +EFIAPI +PciSegmentRegisterForRuntimeAccess ( + IN UINTN Address + ) +{ + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (Address, 0); + return RETURN_UNSUPPORTED; +} + +/** + Reads an 8-bit PCI configuration register. + + Reads and returns the 8-bit PCI configuration register specified by Address. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, + and Register. + + @return The 8-bit PCI configuration register specified by Address. + +**/ +UINT8 +EFIAPI +PciSegmentRead8 ( + IN UINT64 Address + ) +{ + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (Address, 0); + + return (UINT8) PciSegmentLibReadWorker (Address, PciCfgWidthUint8); +} + +/** + Writes an 8-bit PCI configuration register. + + Writes the 8-bit PCI configuration register specified by Address with the value specified by Value. + Value is returned. This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param Value The value to write. + + @return The value written to the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentWrite8 ( + IN UINT64 Address, + IN UINT8 Value + ) +{ + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (Address, 0); + + return (UINT8) PciSegmentLibWriteWorker (Address, PciCfgWidthUint8, Value); +} + +/** + Performs a bitwise OR of an 8-bit PCI configuration register with an 8-bit value. + + Reads the 8-bit PCI configuration register specified by Address, + performs a bitwise OR between the read result and the value specified by OrData, + and writes the result to the 8-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param OrData The value to OR with the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentOr8 ( + IN UINT64 Address, + IN UINT8 OrData + ) +{ + return PciSegmentWrite8 (Address, (UINT8) (PciSegmentRead8 (Address) | OrData)); +} + +/** + Performs a bitwise AND of an 8-bit PCI configuration register with an 8-bit value. + + Reads the 8-bit PCI configuration register specified by Address, + performs a bitwise AND between the read result and the value specified by AndData, + and writes the result to the 8-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + If any reserved bits in Address are set, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param AndData The value to AND with the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentAnd8 ( + IN UINT64 Address, + IN UINT8 AndData + ) +{ + return PciSegmentWrite8 (Address, (UINT8) (PciSegmentRead8 (Address) & AndData)); +} + +/** + Performs a bitwise AND of an 8-bit PCI configuration register with an 8-bit value, + followed a bitwise OR with another 8-bit value. + + Reads the 8-bit PCI configuration register specified by Address, + performs a bitwise AND between the read result and the value specified by AndData, + performs a bitwise OR between the result of the AND operation and the value specified by OrData, + and writes the result to the 8-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param AndData The value to AND with the PCI configuration register. + @param OrData The value to OR with the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentAndThenOr8 ( + IN UINT64 Address, + IN UINT8 AndData, + IN UINT8 OrData + ) +{ + return PciSegmentWrite8 (Address, (UINT8) ((PciSegmentRead8 (Address) & AndData) | OrData)); +} + +/** + Reads a bit field of a PCI configuration register. + + Reads the bit field in an 8-bit PCI configuration register. The bit field is + specified by the StartBit and the EndBit. The value of the bit field is + returned. + + If any reserved bits in Address are set, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Address The PCI configuration register to read. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + + @return The value of the bit field read from the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentBitFieldRead8 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit + ) +{ + return BitFieldRead8 (PciSegmentRead8 (Address), StartBit, EndBit); +} + +/** + Writes a bit field to a PCI configuration register. + + Writes Value to the bit field of the PCI configuration register. The bit + field is specified by the StartBit and the EndBit. All other bits in the + destination PCI configuration register are preserved. The new value of the + 8-bit register is returned. + + If any reserved bits in Address are set, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + @param Value The new value of the bit field. + + @return The value written back to the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentBitFieldWrite8 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT8 Value + ) +{ + return PciSegmentWrite8 ( + Address, + BitFieldWrite8 (PciSegmentRead8 (Address), StartBit, EndBit, Value) + ); +} + +/** + Reads a bit field in an 8-bit PCI configuration, performs a bitwise OR, and + writes the result back to the bit field in the 8-bit port. + + Reads the 8-bit PCI configuration register specified by Address, performs a + bitwise OR between the read result and the value specified by + OrData, and writes the result to the 8-bit PCI configuration register + specified by Address. The value written to the PCI configuration register is + returned. This function must guarantee that all PCI read and write operations + are serialized. Extra left bits in OrData are stripped. + + If any reserved bits in Address are set, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + @param OrData The value to OR with the PCI configuration register. + + @return The value written back to the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentBitFieldOr8 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT8 OrData + ) +{ + return PciSegmentWrite8 ( + Address, + BitFieldOr8 (PciSegmentRead8 (Address), StartBit, EndBit, OrData) + ); +} + +/** + Reads a bit field in an 8-bit PCI configuration register, performs a bitwise + AND, and writes the result back to the bit field in the 8-bit register. + + Reads the 8-bit PCI configuration register specified by Address, performs a + bitwise AND between the read result and the value specified by AndData, and + writes the result to the 8-bit PCI configuration register specified by + Address. The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are + serialized. Extra left bits in AndData are stripped. + + If any reserved bits in Address are set, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + @param AndData The value to AND with the PCI configuration register. + + @return The value written back to the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentBitFieldAnd8 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT8 AndData + ) +{ + return PciSegmentWrite8 ( + Address, + BitFieldAnd8 (PciSegmentRead8 (Address), StartBit, EndBit, AndData) + ); +} + +/** + Reads a bit field in an 8-bit port, performs a bitwise AND followed by a + bitwise OR, and writes the result back to the bit field in the + 8-bit port. + + Reads the 8-bit PCI configuration register specified by Address, performs a + bitwise AND followed by a bitwise OR between the read result and + the value specified by AndData, and writes the result to the 8-bit PCI + configuration register specified by Address. The value written to the PCI + configuration register is returned. This function must guarantee that all PCI + read and write operations are serialized. Extra left bits in both AndData and + OrData are stripped. + + If any reserved bits in Address are set, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..7. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..7. + @param AndData The value to AND with the PCI configuration register. + @param OrData The value to OR with the result of the AND operation. + + @return The value written back to the PCI configuration register. + +**/ +UINT8 +EFIAPI +PciSegmentBitFieldAndThenOr8 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT8 AndData, + IN UINT8 OrData + ) +{ + return PciSegmentWrite8 ( + Address, + BitFieldAndThenOr8 (PciSegmentRead8 (Address), StartBit, EndBit, AndData, OrData) + ); +} + +/** + Reads a 16-bit PCI configuration register. + + Reads and returns the 16-bit PCI configuration register specified by Address. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + + @return The 16-bit PCI configuration register specified by Address. + +**/ +UINT16 +EFIAPI +PciSegmentRead16 ( + IN UINT64 Address + ) +{ + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (Address, 1); + + return (UINT16) PciSegmentLibReadWorker (Address, PciCfgWidthUint16); +} + +/** + Writes a 16-bit PCI configuration register. + + Writes the 16-bit PCI configuration register specified by Address with the value specified by Value. + Value is returned. This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param Value The value to write. + + @return The parameter of Value. + +**/ +UINT16 +EFIAPI +PciSegmentWrite16 ( + IN UINT64 Address, + IN UINT16 Value + ) +{ + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (Address, 1); + + return (UINT16) PciSegmentLibWriteWorker (Address, PciCfgWidthUint16, Value); +} + +/** + Performs a bitwise OR of a 16-bit PCI configuration register with + a 16-bit value. + + Reads the 16-bit PCI configuration register specified by Address, performs a + bitwise OR between the read result and the value specified by + OrData, and writes the result to the 16-bit PCI configuration register + specified by Address. The value written to the PCI configuration register is + returned. This function must guarantee that all PCI read and write operations + are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function and + Register. + @param OrData The value to OR with the PCI configuration register. + + @return The value written back to the PCI configuration register. + +**/ +UINT16 +EFIAPI +PciSegmentOr16 ( + IN UINT64 Address, + IN UINT16 OrData + ) +{ + return PciSegmentWrite16 (Address, (UINT16) (PciSegmentRead16 (Address) | OrData)); +} + +/** + Performs a bitwise AND of a 16-bit PCI configuration register with a 16-bit value. + + Reads the 16-bit PCI configuration register specified by Address, + performs a bitwise AND between the read result and the value specified by AndData, + and writes the result to the 16-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param AndData The value to AND with the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT16 +EFIAPI +PciSegmentAnd16 ( + IN UINT64 Address, + IN UINT16 AndData + ) +{ + return PciSegmentWrite16 (Address, (UINT16) (PciSegmentRead16 (Address) & AndData)); +} + +/** + Performs a bitwise AND of a 16-bit PCI configuration register with a 16-bit value, + followed a bitwise OR with another 16-bit value. + + Reads the 16-bit PCI configuration register specified by Address, + performs a bitwise AND between the read result and the value specified by AndData, + performs a bitwise OR between the result of the AND operation and the value specified by OrData, + and writes the result to the 16-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param AndData The value to AND with the PCI configuration register. + @param OrData The value to OR with the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT16 +EFIAPI +PciSegmentAndThenOr16 ( + IN UINT64 Address, + IN UINT16 AndData, + IN UINT16 OrData + ) +{ + return PciSegmentWrite16 (Address, (UINT16) ((PciSegmentRead16 (Address) & AndData) | OrData)); +} + +/** + Reads a bit field of a PCI configuration register. + + Reads the bit field in a 16-bit PCI configuration register. The bit field is + specified by the StartBit and the EndBit. The value of the bit field is + returned. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Address The PCI configuration register to read. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + + @return The value of the bit field read from the PCI configuration register. + +**/ +UINT16 +EFIAPI +PciSegmentBitFieldRead16 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit + ) +{ + return BitFieldRead16 (PciSegmentRead16 (Address), StartBit, EndBit); +} + +/** + Writes a bit field to a PCI configuration register. + + Writes Value to the bit field of the PCI configuration register. The bit + field is specified by the StartBit and the EndBit. All other bits in the + destination PCI configuration register are preserved. The new value of the + 16-bit register is returned. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + @param Value The new value of the bit field. + + @return The value written back to the PCI configuration register. + +**/ +UINT16 +EFIAPI +PciSegmentBitFieldWrite16 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT16 Value + ) +{ + return PciSegmentWrite16 ( + Address, + BitFieldWrite16 (PciSegmentRead16 (Address), StartBit, EndBit, Value) + ); +} + +/** + Reads the 16-bit PCI configuration register specified by Address, + performs a bitwise OR between the read result and the value specified by OrData, + and writes the result to the 16-bit PCI configuration register specified by Address. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + @param OrData The value to OR with the PCI configuration register. + + @return The value written back to the PCI configuration register. + +**/ +UINT16 +EFIAPI +PciSegmentBitFieldOr16 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT16 OrData + ) +{ + return PciSegmentWrite16 ( + Address, + BitFieldOr16 (PciSegmentRead16 (Address), StartBit, EndBit, OrData) + ); +} + +/** + Reads a bit field in a 16-bit PCI configuration, performs a bitwise OR, + and writes the result back to the bit field in the 16-bit port. + + Reads the 16-bit PCI configuration register specified by Address, + performs a bitwise OR between the read result and the value specified by OrData, + and writes the result to the 16-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + Extra left bits in OrData are stripped. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 16-bit boundary, then ASSERT(). + If StartBit is greater than 7, then ASSERT(). + If EndBit is greater than 7, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param StartBit The ordinal of the least significant bit in the bit field. + The ordinal of the least significant bit in a byte is bit 0. + @param EndBit The ordinal of the most significant bit in the bit field. + The ordinal of the most significant bit in a byte is bit 7. + @param AndData The value to AND with the read value from the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT16 +EFIAPI +PciSegmentBitFieldAnd16 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT16 AndData + ) +{ + return PciSegmentWrite16 ( + Address, + BitFieldAnd16 (PciSegmentRead16 (Address), StartBit, EndBit, AndData) + ); +} + +/** + Reads a bit field in a 16-bit port, performs a bitwise AND followed by a + bitwise OR, and writes the result back to the bit field in the + 16-bit port. + + Reads the 16-bit PCI configuration register specified by Address, performs a + bitwise AND followed by a bitwise OR between the read result and + the value specified by AndData, and writes the result to the 16-bit PCI + configuration register specified by Address. The value written to the PCI + configuration register is returned. This function must guarantee that all PCI + read and write operations are serialized. Extra left bits in both AndData and + OrData are stripped. + + If any reserved bits in Address are set, then ASSERT(). + If StartBit is greater than 15, then ASSERT(). + If EndBit is greater than 15, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..15. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..15. + @param AndData The value to AND with the PCI configuration register. + @param OrData The value to OR with the result of the AND operation. + + @return The value written back to the PCI configuration register. + +**/ +UINT16 +EFIAPI +PciSegmentBitFieldAndThenOr16 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT16 AndData, + IN UINT16 OrData + ) +{ + return PciSegmentWrite16 ( + Address, + BitFieldAndThenOr16 (PciSegmentRead16 (Address), StartBit, EndBit, AndData, OrData) + ); +} + +/** + Reads a 32-bit PCI configuration register. + + Reads and returns the 32-bit PCI configuration register specified by Address. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 32-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, + and Register. + + @return The 32-bit PCI configuration register specified by Address. + +**/ +UINT32 +EFIAPI +PciSegmentRead32 ( + IN UINT64 Address + ) +{ + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (Address, 3); + + return PciSegmentLibReadWorker (Address, PciCfgWidthUint32); +} + +/** + Writes a 32-bit PCI configuration register. + + Writes the 32-bit PCI configuration register specified by Address with the value specified by Value. + Value is returned. This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 32-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, + Function, and Register. + @param Value The value to write. + + @return The parameter of Value. + +**/ +UINT32 +EFIAPI +PciSegmentWrite32 ( + IN UINT64 Address, + IN UINT32 Value + ) +{ + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (Address, 3); + + return PciSegmentLibWriteWorker (Address, PciCfgWidthUint32, Value); +} + +/** + Performs a bitwise OR of a 32-bit PCI configuration register with a 32-bit value. + + Reads the 32-bit PCI configuration register specified by Address, + performs a bitwise OR between the read result and the value specified by OrData, + and writes the result to the 32-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 32-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, and Register. + @param OrData The value to OR with the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT32 +EFIAPI +PciSegmentOr32 ( + IN UINT64 Address, + IN UINT32 OrData + ) +{ + return PciSegmentWrite32 (Address, PciSegmentRead32 (Address) | OrData); +} + +/** + Performs a bitwise AND of a 32-bit PCI configuration register with a 32-bit value. + + Reads the 32-bit PCI configuration register specified by Address, + performs a bitwise AND between the read result and the value specified by AndData, + and writes the result to the 32-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 32-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, + and Register. + @param AndData The value to AND with the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT32 +EFIAPI +PciSegmentAnd32 ( + IN UINT64 Address, + IN UINT32 AndData + ) +{ + return PciSegmentWrite32 (Address, PciSegmentRead32 (Address) & AndData); +} + +/** + Performs a bitwise AND of a 32-bit PCI configuration register with a 32-bit value, + followed a bitwise OR with another 32-bit value. + + Reads the 32-bit PCI configuration register specified by Address, + performs a bitwise AND between the read result and the value specified by AndData, + performs a bitwise OR between the result of the AND operation and the value specified by OrData, + and writes the result to the 32-bit PCI configuration register specified by Address. + The value written to the PCI configuration register is returned. + This function must guarantee that all PCI read and write operations are serialized. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 32-bit boundary, then ASSERT(). + + @param Address The address that encodes the PCI Segment, Bus, Device, Function, + and Register. + @param AndData The value to AND with the PCI configuration register. + @param OrData The value to OR with the PCI configuration register. + + @return The value written to the PCI configuration register. + +**/ +UINT32 +EFIAPI +PciSegmentAndThenOr32 ( + IN UINT64 Address, + IN UINT32 AndData, + IN UINT32 OrData + ) +{ + return PciSegmentWrite32 (Address, (PciSegmentRead32 (Address) & AndData) | OrData); +} + +/** + Reads a bit field of a PCI configuration register. + + Reads the bit field in a 32-bit PCI configuration register. The bit field is + specified by the StartBit and the EndBit. The value of the bit field is + returned. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 32-bit boundary, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + + @param Address The PCI configuration register to read. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + + @return The value of the bit field read from the PCI configuration register. + +**/ +UINT32 +EFIAPI +PciSegmentBitFieldRead32 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit + ) +{ + return BitFieldRead32 (PciSegmentRead32 (Address), StartBit, EndBit); +} + +/** + Writes a bit field to a PCI configuration register. + + Writes Value to the bit field of the PCI configuration register. The bit + field is specified by the StartBit and the EndBit. All other bits in the + destination PCI configuration register are preserved. The new value of the + 32-bit register is returned. + + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 32-bit boundary, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param Value The new value of the bit field. + + @return The value written back to the PCI configuration register. + +**/ +UINT32 +EFIAPI +PciSegmentBitFieldWrite32 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 Value + ) +{ + return PciSegmentWrite32 ( + Address, + BitFieldWrite32 (PciSegmentRead32 (Address), StartBit, EndBit, Value) + ); +} + +/** + Reads a bit field in a 32-bit PCI configuration, performs a bitwise OR, and + writes the result back to the bit field in the 32-bit port. + + Reads the 32-bit PCI configuration register specified by Address, performs a + bitwise OR between the read result and the value specified by + OrData, and writes the result to the 32-bit PCI configuration register + specified by Address. The value written to the PCI configuration register is + returned. This function must guarantee that all PCI read and write operations + are serialized. Extra left bits in OrData are stripped. + + If any reserved bits in Address are set, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param OrData The value to OR with the PCI configuration register. + + @return The value written back to the PCI configuration register. + +**/ +UINT32 +EFIAPI +PciSegmentBitFieldOr32 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 OrData + ) +{ + return PciSegmentWrite32 ( + Address, + BitFieldOr32 (PciSegmentRead32 (Address), StartBit, EndBit, OrData) + ); +} + +/** + Reads a bit field in a 32-bit PCI configuration register, performs a bitwise + AND, and writes the result back to the bit field in the 32-bit register. + + + Reads the 32-bit PCI configuration register specified by Address, performs a bitwise + AND between the read result and the value specified by AndData, and writes the result + to the 32-bit PCI configuration register specified by Address. The value written to + the PCI configuration register is returned. This function must guarantee that all PCI + read and write operations are serialized. Extra left bits in AndData are stripped. + If any reserved bits in Address are set, then ASSERT(). + If Address is not aligned on a 32-bit boundary, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param AndData The value to AND with the PCI configuration register. + + @return The value written back to the PCI configuration register. + +**/ +UINT32 +EFIAPI +PciSegmentBitFieldAnd32 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 AndData + ) +{ + return PciSegmentWrite32 ( + Address, + BitFieldAnd32 (PciSegmentRead32 (Address), StartBit, EndBit, AndData) + ); +} + +/** + Reads a bit field in a 32-bit port, performs a bitwise AND followed by a + bitwise OR, and writes the result back to the bit field in the + 32-bit port. + + Reads the 32-bit PCI configuration register specified by Address, performs a + bitwise AND followed by a bitwise OR between the read result and + the value specified by AndData, and writes the result to the 32-bit PCI + configuration register specified by Address. The value written to the PCI + configuration register is returned. This function must guarantee that all PCI + read and write operations are serialized. Extra left bits in both AndData and + OrData are stripped. + + If any reserved bits in Address are set, then ASSERT(). + If StartBit is greater than 31, then ASSERT(). + If EndBit is greater than 31, then ASSERT(). + If EndBit is less than StartBit, then ASSERT(). + If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). + + @param Address The PCI configuration register to write. + @param StartBit The ordinal of the least significant bit in the bit field. + Range 0..31. + @param EndBit The ordinal of the most significant bit in the bit field. + Range 0..31. + @param AndData The value to AND with the PCI configuration register. + @param OrData The value to OR with the result of the AND operation. + + @return The value written back to the PCI configuration register. + +**/ +UINT32 +EFIAPI +PciSegmentBitFieldAndThenOr32 ( + IN UINT64 Address, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINT32 AndData, + IN UINT32 OrData + ) +{ + return PciSegmentWrite32 ( + Address, + BitFieldAndThenOr32 (PciSegmentRead32 (Address), StartBit, EndBit, AndData, OrData) + ); +} + +/** + Reads a range of PCI configuration registers into a caller supplied buffer. + + Reads the range of PCI configuration registers specified by StartAddress and + Size into the buffer specified by Buffer. This function only allows the PCI + configuration registers from a single PCI function to be read. Size is + returned. When possible 32-bit PCI configuration read cycles are used to read + from StartAdress to StartAddress + Size. Due to alignment restrictions, 8-bit + and 16-bit PCI configuration read cycles may be used at the beginning and the + end of the range. + + If any reserved bits in StartAddress are set, then ASSERT(). + If ((StartAddress & 0xFFF) + Size) > 0x1000, then ASSERT(). + If Size > 0 and Buffer is NULL, then ASSERT(). + + @param StartAddress The starting address that encodes the PCI Segment, Bus, + Device, Function and Register. + @param Size The size in bytes of the transfer. + @param Buffer The pointer to a buffer receiving the data read. + + @return Size + +**/ +UINTN +EFIAPI +PciSegmentReadBuffer ( + IN UINT64 StartAddress, + IN UINTN Size, + OUT VOID *Buffer + ) +{ + UINTN ReturnValue; + + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (StartAddress, 0); + ASSERT (((StartAddress & 0xFFF) + Size) <= 0x1000); + + if (Size == 0) { + return Size; + } + + ASSERT (Buffer != NULL); + + // + // Save Size for return + // + ReturnValue = Size; + + if ((StartAddress & BIT0) != 0) { + // + // Read a byte if StartAddress is byte aligned + // + *(volatile UINT8 *)Buffer = PciSegmentRead8 (StartAddress); + StartAddress += sizeof (UINT8); + Size -= sizeof (UINT8); + Buffer = (UINT8*)Buffer + 1; + } + + if (Size >= sizeof (UINT16) && (StartAddress & BIT1) != 0) { + // + // Read a word if StartAddress is word aligned + // + WriteUnaligned16 (Buffer, PciSegmentRead16 (StartAddress)); + StartAddress += sizeof (UINT16); + Size -= sizeof (UINT16); + Buffer = (UINT16*)Buffer + 1; + } + + while (Size >= sizeof (UINT32)) { + // + // Read as many double words as possible + // + WriteUnaligned32 (Buffer, PciSegmentRead32 (StartAddress)); + StartAddress += sizeof (UINT32); + Size -= sizeof (UINT32); + Buffer = (UINT32*)Buffer + 1; + } + + if (Size >= sizeof (UINT16)) { + // + // Read the last remaining word if exist + // + WriteUnaligned16 (Buffer, PciSegmentRead16 (StartAddress)); + StartAddress += sizeof (UINT16); + Size -= sizeof (UINT16); + Buffer = (UINT16*)Buffer + 1; + } + + if (Size >= sizeof (UINT8)) { + // + // Read the last remaining byte if exist + // + *(volatile UINT8 *)Buffer = PciSegmentRead8 (StartAddress); + } + + return ReturnValue; +} + + +/** + Copies the data in a caller supplied buffer to a specified range of PCI + configuration space. + + Writes the range of PCI configuration registers specified by StartAddress and + Size from the buffer specified by Buffer. This function only allows the PCI + configuration registers from a single PCI function to be written. Size is + returned. When possible 32-bit PCI configuration write cycles are used to + write from StartAdress to StartAddress + Size. Due to alignment restrictions, + 8-bit and 16-bit PCI configuration write cycles may be used at the beginning + and the end of the range. + + If any reserved bits in StartAddress are set, then ASSERT(). + If ((StartAddress & 0xFFF) + Size) > 0x1000, then ASSERT(). + If Size > 0 and Buffer is NULL, then ASSERT(). + + @param StartAddress The starting address that encodes the PCI Segment, Bus, + Device, Function and Register. + @param Size The size in bytes of the transfer. + @param Buffer The pointer to a buffer containing the data to write. + + @return The parameter of Size. + +**/ +UINTN +EFIAPI +PciSegmentWriteBuffer ( + IN UINT64 StartAddress, + IN UINTN Size, + IN VOID *Buffer + ) +{ + UINTN ReturnValue; + + ASSERT_INVALID_PCI_SEGMENT_ADDRESS (StartAddress, 0); + ASSERT (((StartAddress & 0xFFF) + Size) <= 0x1000); + + if (Size == 0) { + return 0; + } + + ASSERT (Buffer != NULL); + + // + // Save Size for return + // + ReturnValue = Size; + + if ((StartAddress & BIT0) != 0) { + // + // Write a byte if StartAddress is byte aligned + // + PciSegmentWrite8 (StartAddress, *(UINT8*)Buffer); + StartAddress += sizeof (UINT8); + Size -= sizeof (UINT8); + Buffer = (UINT8*)Buffer + 1; + } + + if (Size >= sizeof (UINT16) && (StartAddress & BIT1) != 0) { + // + // Write a word if StartAddress is word aligned + // + PciSegmentWrite16 (StartAddress, ReadUnaligned16 (Buffer)); + StartAddress += sizeof (UINT16); + Size -= sizeof (UINT16); + Buffer = (UINT16*)Buffer + 1; + } + + while (Size >= sizeof (UINT32)) { + // + // Write as many double words as possible + // + PciSegmentWrite32 (StartAddress, ReadUnaligned32 (Buffer)); + StartAddress += sizeof (UINT32); + Size -= sizeof (UINT32); + Buffer = (UINT32*)Buffer + 1; + } + + if (Size >= sizeof (UINT16)) { + // + // Write the last remaining word if exist + // + PciSegmentWrite16 (StartAddress, ReadUnaligned16 (Buffer)); + StartAddress += sizeof (UINT16); + Size -= sizeof (UINT16); + Buffer = (UINT16*)Buffer + 1; + } + + if (Size >= sizeof (UINT8)) { + // + // Write the last remaining byte if exist + // + PciSegmentWrite8 (StartAddress, *(UINT8*)Buffer); + } + + return ReturnValue; +}